The Effect of Fibrous Reinforcement on the Polycondensation Degree of Slag-Based Alkali Activated Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Alkali-Activated Mixtures
2.3. Characterization and Reactivity of Slags and Alkali-Activated Materials
- Reactivity test in NaOH on as-received slags.
- Leaching test in distilled water on as-received slags and AAM + AACs.
- Leaching test in acetic acid on as-received slags and AAM + AACs.
- Test in hydrochloric acid.
3. Results and Discussion
3.1. Carbonated and Desulfurization Slags Characterization
3.2. AAM and AAC Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef] [Green Version]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. Chapter 16—Geopolymers and Other Alkali-Activated Materials. In Butterworth-Heinemann, 5th ed.; Hewlett, P.C., Liska, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 779–805. [Google Scholar] [CrossRef]
- Mastali, M.; Alzaza, A.; Shaad, K.M.; Kinnunen, P.; Abdollahnejad, Z.; Woof, B.; Illikainen, M. Using Carbonated BOF Slag Aggregates in Alkali-Activated Concretes. Materials 2019, 12, 1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastali, M.; Shaad, K.M.; Abdollahnejad, Z.; Falah, M.; Kinnunen, P.; Illikainen, M. Towards sustainable bricks made with fibre-reinforced alkali-activated desulfurization slag mortars incorporating carbonated basic oxygen furnace aggregates. Constr. Build. Mater. 2020, 232, 117258. [Google Scholar] [CrossRef]
- Adesanya, E.; Ohenoja, K.; Kinnunen, P.; Illikainen, M. Properties and durability of alkali-activated ladle slag. Mater. Struct. 2017, 50, 255. [Google Scholar] [CrossRef]
- Nguyen, H.; Carvelli, V.; Adesanya, E.; Kinnunen, P.; Illikainen, M. High performance cementitious composite from alkali-activated ladle slag reinforced with polypropylene fibres. Cem. Concr. Compos. 2018, 90, 150–160. [Google Scholar] [CrossRef]
- Lancellotti, I.; Piccolo, F.; Traven, K.; Češnovar, M.; Ducman, V.; Leonelli, C. Alkali activation of metallurgical slags: Reactivity, chemical behavior, and environmental assessment. Materials 2021, 14, 639. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Kinnunen, P.; Carvelli, V.; Mastali, M.; Illikainen, M. Strain hardening polypropylene fibre reinforced composite from hydrated ladle slag and gypsum. Compos. Part B Eng. 2019, 158, 328–338. [Google Scholar] [CrossRef]
- Gijbels, K.; Nguyen, H.; Kinnunen, P.; Schroeyers, W.; Pontikes, Y.; Schreurs, S.; Illikainen, M. Feasibility of incorporating phosphogypsum in ettringite-based binder from ladle slag. J. Clean. Prod. 2019, 237, 117793. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.-C.; Shi, C.; Pan, S.-Y. Characteristics of steel slags and their use in cement and concrete—A review. Resour. Conserv. Recycl. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fibre-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Lee, W.-H.; Lin, K.-L.; Chang, T.-H.; Ding, Y.-C.; Cheng, T.-W. Sustainable Development and Performance Evaluation of Marble-Waste-Based Geopolymer Concrete. Polymers 2020, 12, 1924. [Google Scholar] [CrossRef] [PubMed]
- Taki, K.; Mukherjee, S.; Patel, A.K.; Kumar, M. Reappraisal review on geopolymer: A new era of aluminosilicate binder for metal immobilization, Environmental Nanotechnology. Monit. Manag. 2020, 14, 100345. [Google Scholar] [CrossRef]
- Arnoult, M.; Perronnet, M.; Rossignol, S. Geopolymer synthetized using reactive or unreactive aluminosilicate. Understanding of reactive mixture. Mater. Chem. Phys. 2019, 237, 121837. [Google Scholar] [CrossRef]
- Nguyễn, H.H.; Choi, J.-I.; Kim, H.-K.; Lee, B.Y. Effects of the type of activator on the self-healing ability of fibre-reinforced alkali-activated slag-based composites at an early age. Constr. Build. Mater. 2019, 224, 980–994. [Google Scholar] [CrossRef]
- Choi, J.-I.; Lee, B.Y.; Ranade, R.; Li, V.C.; Lee, Y. Ultra-high-ductile behavior of a polyethylene fibre-reinforced alkali-activated slag-based composite. Cem. Concr. Compos. 2016, 70, 153–158. [Google Scholar] [CrossRef]
- Zhang, L.V.; Suleiman, A.R.; Nehdi, M.L. Self-healing in fibre-reinforced alkali-activated slag composites incorporating different additives. Constr. Build. Mater. 2020, 262, 120059. [Google Scholar] [CrossRef]
- Adesina, A.; Das, S. Drying shrinkage and permeability properties of fibre reinforced alkali-activated composites. Constr. Build. Mater. 2020, 251, 119076. [Google Scholar] [CrossRef]
- Vilaplana, J.L.; Baeza, F.J.; Galao, O.; EGAlcocel Zornoza, E.; Garcés, P. Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibres. Constr. Build. Mater. 2016, 116, 63–71. [Google Scholar] [CrossRef]
- Beglarigale, A.; Aydin, S.; Kizilirmak, C. Fibre-matrix bond characteristics of alkali-activated slag cement-based composites. J. Mater. Civ. Eng. 2016, 28, 04016133. [Google Scholar] [CrossRef]
- Bernal, S.; De Gutierrez, R.; Delvasto, S.; Rodriguez, E. Performance of an alkali-activated slag concrete reinforced with steel fibres. Constr. Build. Mater. 2010, 24, 208–214. [Google Scholar] [CrossRef]
- Bemal, S.; De Gutiérrez, R.M.; Rodríguez, E.; Delvasto, S.; Puertas, F. Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete. Mater. Constr. 2009, 59, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Koenig, A.; Wuestemann, A.; Gatti, F.; Rossi, L.; Fuchs FFessel, D.; Dathe, F.; Dehn, F.; Minelli, F. Flexural behaviour of steel and macro-PP fibre reinforced concretes based on alkali-activated binders. Constr. Build. Mater. 2019, 211, 583–593. [Google Scholar] [CrossRef]
- Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T. Alkali-activated slag mortars reinforced with AR glass fibre. Performance and properties. Mater. Constr. 2006, 283, 79–90. [Google Scholar] [CrossRef]
- Gulicovski, J.; Nenadović, S.; Kljajević, L.; Mirković, M.; Nišavić, M.; Kragović, M.; Stojmenović, M. Geopolymer/CeO2 as Solid Electrolyte for IT-SOFCby. Polymers 2020, 12, 248. [Google Scholar] [CrossRef] [Green Version]
- Mastali, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. Performance of waste based alkaline mortars submitted to accelerated carbon dioxide curing. Resour. Conserv. Recycl. 2018, 129, 12–19. [Google Scholar] [CrossRef]
- Kiventerä, J.; Lancellotti, I.; Catauro, M.; Poggetto, F.D.; Leonelli, C.; Illikainen, M. Alkali activation as new option for gold mine tailings inertization. J. Clean. Prod. 2018, 187, 76–84. [Google Scholar] [CrossRef]
- Ruiz-Santaquiteria, C.; Fernández-Jiménez, A.; Palomo, A. Quantitative determination of reactive SiO2 and Al2O3 in aluminosilicate materials. In Proceedings of the XIII International Congress on the Chemistry of Cement, Madrid, Spain, 3–8 July 2011. [Google Scholar]
- Lancellotti, I.; Ponzoni, C.; Barbieri, L.; Leonelli, C. Alkali activation processes for incinerator residues management. Waste Manag. 2013, 33, 1740–1749. [Google Scholar] [CrossRef]
- Barone, G.; Finocchiaro, C.; Lancellotti, I.; Leonelli, C.; Mazzoleni, P.; Sgarlata, C.; Stroscio, A. Potentiality of the use of pyroclastic volcanic residues in the production of alkali activated material. Waste Biomass Valorization 2020, 12, 1075–1094. [Google Scholar] [CrossRef] [Green Version]
- Valencia-Saavedra, W.G.; de Gutiérrez, R.M.; Puertas, F. Performance of FA-based geopolymer concretes exposed to acetic and sulfuric acids. Constr. Build. Mater. 2020, 257, 1195032020. [Google Scholar] [CrossRef]
- Arioz, E.; Arioz, O.; Kockar, O.M. Leaching of F-type fly ash based geopolymers. Procedia Eng. 2012, 42, 1114–1120. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, L.; Bonamartini, A.C.; Lancellotti, I. Alkaline and alkaline-earth silicate glasses and glass-ceramics from municipal and industrial wastes. J. Eur. Ceram. Soc. 2000, 20, 2477–2483. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Criado, M. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cem. Concr. Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Fletcher, R.A.; MacKenzie, K.J.D.; Nicholson, C.L.; Shimada, S. The composition range of aluminosilicate geopolymers. J. Eur. Ceram. Soc. 2005, 25, 1471–1477. [Google Scholar] [CrossRef]
- Lancellotti, I.; Ponzoni, C.; Bignozzi, M.C.; Barbieri, L.; Leonelli, C. Incinerator bottom ash and ladle slag for geopolymers synthesis. Waste Biomass Valorization 2014, 5, 393–401. [Google Scholar] [CrossRef]
- Shu, B.; Wu, S.; Dong, L.; Norambuena-Contreras, J.; Li, Y.; Li, C.; Yang, X.; Liu, Q.; Wang, Q.; Wang, F.; et al. Self-healing capability of asphalt mixture containing polymeric composite fibers under acid and saline-alkali water solutions. J. Clean. Prod. 2020, 268, 122387. [Google Scholar] [CrossRef]
- Ganesan, N.; Abraham, R.; Raj, S.D. Durability characteristics of steel fibre reinforced geopolymer concrete, Constr. Build. Mater. 2015, 93, 471–476. [Google Scholar] [CrossRef]
- Biswas, R.K.; Khan, P.; Mukherjee, S.; Mukhopadhyay, A.K.; Ghosh, J.; Muraleedharan, K. Study of short range structure of amorphous silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS. J. Non-Cryst. Solids 2018, 488, 1–9. [Google Scholar] [CrossRef]
Oxides [wt.%] | c-BOF Slag | St.dev | De-S Slag | St.dev |
---|---|---|---|---|
SiO2 | 13.06 | 0.12 | 16.58 | 0.18 |
Al2O3 | 1.27 | 0.05 | 2.4 | 0.07 |
Fe2O3 | 22.72 | 0.11 | 17.57 | 0.05 |
CaO | 57.96 | 0.09 | 60.44 | 0.13 |
MgO | 2.02 | 0.07 | 1.75 | 0.16 |
SO3 | 0.21 | 0.05 | 5.46 | 0.28 |
LOI | 2.76 | 9.49 |
Type | Basalt Fiber | Cellulose Fiber |
---|---|---|
Length (mm) | 6 | 3 |
Diameter (m) | 17 | 15 |
Young’s modulus (GPa) | 100 | 8.5 |
Tensile strength (MPa) | 4500 | 750 |
Density (g/cm3) | 2.63 | 1.10 |
Specimen ID | De-S Slag (g) | BOF Aggregate (g) | Alkali/Binder Ratio | Fibre (wt%) | Silica Modulus (mol/mol) | NaOH (M) |
---|---|---|---|---|---|---|
M1 | 100 | 300 | 1 | - | 2.5 | 8 |
M2 | 100 | 300 | 1 | 4% basalt fibre | 2.5 | 8 |
M3 | 100 | 300 | 1 | 4% cellulose fibre | 2.5 | 8 |
Sample/Element (mg/L) | c-BOF Slag | De-S Slag |
---|---|---|
Al | 19 | 1.7 |
Si | 68 | 15 |
Si/Al | 3.55 | 8.67 |
Cr | 0.17 | 0.02 |
Ni | 0.13 | 0.09 |
Cu | 0.20 | 0.06 |
Zn | 0.06 | 0.03 |
As | <DL | <DL |
Se | <DL | <DL |
Mo | 0.13 | 0.32 |
Cd | <DL | <DL |
Sb | <DL | <DL |
Ba | 0.01 | 0.05 |
Pb | <DL | <DL |
Heavy Metals (mg/L) | Carbonated Slag | Desulfurization Slag | Law Limits | ||
---|---|---|---|---|---|
Acetic Acid | HCl Acid | Acetic Acid | HCl Test | Acetic Acid | |
Ba | 0.06 | 0.23 | 0.21 | 0.17 | 20 |
Cd | <0.02 | <0.02 | <0.02 | <0.02 | 0.02 |
Cr | <0.02 | 4.63 | <0.02 | 0.36 | 2 |
Cu | <0.02 | 0.03 | <0.02 | 0.02 | 0.1 |
Ni | <0.02 | 0.02 | 0.02 | 0.06 | 2 |
Pb | <0.02 | 0.69 | <0.02 | <0.02 | 0.2 |
Zn | 0.06 | 0.19 | 0.05 | 0.11 | 0.5 |
Mo | <0.02 | 0.02 | <0.02 | <0.02 | - |
Sb | <0.02 | 0.03 | <0.02 | <0.02 | - |
As | <0.04 | <0.04 | <0.04 | <0.04 | 0.5 |
Heavy Metals (mg/L) | M1 | M2 | M3 | Law Limits | |||
---|---|---|---|---|---|---|---|
Acetic Acid | HCl Acid | Acetic Acid | HCl Test | Acetic Acid | HCl Test | Acetic Acid | |
Ba | 0.06 | 0.16 | 0.08 | 0.17 | 0.06 | 0.17 | 20 |
Cd | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | 0.02 |
Cr | <0.02 | 2 | <0.02 | 1.98 | 0.05 | 2.7 | 2 |
Cu | <0.02 | 0.02 | <0.02 | 0.03 | <0.02 | 0.02 | 0.1 |
Ni | <0.02 | 0.05 | <0.02 | 0.04 | <0.02 | 0.03 | 2 |
Pb | <0.02 | 0.02 | <0.02 | 0.02 | <0.02 | <0.02 | 0.2 |
Zn | 0.03 | 0.07 | 0.03 | 0.1 | 0.04 | 0.07 | 0.5 |
Mo | 0.02 | <0.02 | 0.02 | <0.02 | 0.02 | <0.02 | - |
Sb | <0.02 | 0.02 | <0.02 | 0.02 | <0.02 | 0.02 | - |
As | <0.04 | <0.04 | <0.04 | <0.04 | <0.04 | <0.04 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lancellotti, I.; Piccolo, F.; Nguyen, H.; Mastali, M.; Alzeer, M.; Illikainen, M.; Leonelli, C. The Effect of Fibrous Reinforcement on the Polycondensation Degree of Slag-Based Alkali Activated Composites. Polymers 2021, 13, 2664. https://doi.org/10.3390/polym13162664
Lancellotti I, Piccolo F, Nguyen H, Mastali M, Alzeer M, Illikainen M, Leonelli C. The Effect of Fibrous Reinforcement on the Polycondensation Degree of Slag-Based Alkali Activated Composites. Polymers. 2021; 13(16):2664. https://doi.org/10.3390/polym13162664
Chicago/Turabian StyleLancellotti, Isabella, Federica Piccolo, Hoang Nguyen, Mohammad Mastali, Mohammad Alzeer, Mirja Illikainen, and Cristina Leonelli. 2021. "The Effect of Fibrous Reinforcement on the Polycondensation Degree of Slag-Based Alkali Activated Composites" Polymers 13, no. 16: 2664. https://doi.org/10.3390/polym13162664
APA StyleLancellotti, I., Piccolo, F., Nguyen, H., Mastali, M., Alzeer, M., Illikainen, M., & Leonelli, C. (2021). The Effect of Fibrous Reinforcement on the Polycondensation Degree of Slag-Based Alkali Activated Composites. Polymers, 13(16), 2664. https://doi.org/10.3390/polym13162664