Antifibrotic Effect of Bletilla striata Polysaccharide-Resveratrol-Impregnated Dual-Layer Carboxymethyl Cellulose-Based Sponge for The Prevention of Epidural Fibrosis after Laminectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Bletilla striata Polysaccharide Extraction
2.3. Preparation of a Dual-Layer CMC-BSP-RES Sponge
2.4. Cultivation of Cell Lines
2.5. Cytocompatibility of the CMC-BSP-RES Sponge
2.6. mRNA Expression in Cells in the CMC-BSP-RES Sponge
2.7. In Vivo Experiments
2.8. MRI Inspection and Peel-Off Testing
2.9. Preparation of Specimens and Histopathological Examination
2.10. Statistical Analysis
3. Results
3.1. Influence of the CMC-BSP-RES Sponge on Mitochondrial Activity
3.2. LDH Cytotoxicity Assay and Cell Survival
3.3. mRNA Expression Analysis by RT-qPCR
3.4. MRI, Peel-Off Testing, and Histological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- BBozkurt, H.; Bektaşoğlu, P.K.; Borekci, A.; Öztürk, Özden Çağlar; Kertmen, H.; Eğilmez, R.; Yüce, M.F.; Gürer, B. Antifibrotic Effect of Boric Acid in Rats with Epidural Fibrosis. World Neurosurg. 2019, 122, e989–e994. [Google Scholar] [CrossRef] [PubMed]
- Ismailoglu, O.; Kizilay, Z.; Cetin, N.K.; Topcu, A.; Berber, O. Effect of curcumine on the formation of epidural fibrosis in an experimental laminectomy model in rats. Turk. Neurosurg. 2018, 29, 440–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carassiti, M.; Di Martino, A.; Centonze, A.; Quattrocchi, C.C.; Caldaria, A.; Agrò, F.; Denaro, V. Failed back surgery syndrome: A new strategy by the epidural injection of MESNA. Musculoskelet. Surg. 2017, 102, 179–184. [Google Scholar] [CrossRef]
- Laurent, G.; Chambers, R.; Hill, M.; McAnulty, R. Regulation of matrix turnover: Fibroblasts, forces, factors and fibrosis. Biochem. Soc. Trans. 2007, 35, 647–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Li, Y.; Shen, W.; Qiao, C.; Ambrosio, F.; Lavasani, M.; Nozaki, M.; Branca, M.F.; Huard, J. Relationships between transforming growth factor-β1, myostatin, and decorin: Implications for skeletal muscle fibrosis. J. Biol. Chem. 2007, 282, 25852–25863. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, L.; Sun, S.; Liu, B.; Wu, N.; Cao, X. The effect of 10-hydroxycamptothecine in preventing fibroblast proliferation and epidural scar adhesion after laminectomy in rats. Eur. J. Pharmacol. 2008, 593, 44–48. [Google Scholar] [CrossRef]
- Duron, J.J. Postoperative intraperitoneal adhesion pathophysiology. Colorectal Dis. 2007, 9, 14–24. [Google Scholar] [CrossRef]
- Baber, Z.; Erdek, M.A. Failed back surgery syndrome: Current perspectives. J. Pain Res. 2016, 9, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.S.; Taylor, R.J. The economic impact of failed back surgery syndrome. Br. J. Pain 2012, 6, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.-J.; Ge, Y.-B.; Sui, T.; Ge, D.-W.; Yang, L.; Tang, J. Mitomycin C induces apoptosis in human epidural scar fibroblasts after surgical decompression for spinal cord injury. Neural Regen. Res. 2017, 12, 644–653. [Google Scholar] [CrossRef]
- Dai, J.; Li, X.; Yan, L.; Chen, H.; He, J.; Wang, S.; Wang, J.; Sun, Y. The effect of suramin on inhibiting fibroblast proliferation and preventing epidural fibrosis after laminectomy in rats. J. Orthop. Surg. Res. 2016, 11, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, X.; Yan, L.; Nie, Q.; Dai, J.; Chen, H.; Wang, J.; Sun, Y. Tamoxifen inhibits fibroblast proliferation and prevents epidural fibrosis by regulating the AKT pathway in rats. Biochem. Biophys. Res. Commun. 2018, 497, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, C.; Sun, J.; Wang, J.; Wang, L.; Li, J. Salvianolic acid B reduced the formation of epidural fibrosis in an experimental rat model. J. Orthop. Surg. Res. 2016, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Shi, R.; Gong, M.; Zhang, J.; Li, W.; Song, Q.; Wu, C.; Tian, W. Icariin-loaded electrospun PCL/gelatin sub-microfiber mat for preventing epidural adhesions after laminectomy. Int. J. Nanomed. 2018, ume 13, 4831–4844. [Google Scholar] [CrossRef] [Green Version]
- Görgülü, A.; Şimşek, O.; Çobanoğlu, S.; Imer, M.; Parsak, T. The effect of epidural free fat graft on the outcome of lumbar disc surgery. Neurosurg. Rev. 2003, 27, 181–184. [Google Scholar] [CrossRef]
- Imran, Y.; Halim, Y. Acute cauda equina syndrome secondary to free fat graft following spinal decompression. Singap. Med. J. 2005, 46, 25–27. [Google Scholar]
- Hu, M.H.; Yang, K.C.; Sun, Y.H.; Chen, Y.C.; Yang, S.H.; Lin, F.H. In Situ forming oxidised hyaluronic acid/adipic acid dihydrazide hydrogel for prevention of epidural fibrosis after laminectomy. Eur. Cells Mater. 2017, 34, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Rajiv, S.; Drilling, A.; Bassiouni, A.; Harding, M.; James, C.; Robinson, S.; Moratti, S.; Wormald, P.-J. Chitosan Dextran gel as an anti adhesion agent in a postlaminectomy spinal sheep model. J. Clin. Neurosci. 2017, 40, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, W.; Fu, D.; Shen, Y.; Chen, Y.-Y.; Wang, L.-L. Update on biomaterials for prevention of epidural adhesion after lumbar laminectomy. J. Orthop. Transl. 2018, 13, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, P.; Shangguan, L.; Ma, J.; Mao, K.; Zhang, Q.; Wang, Y.; Liu, Z.; Mao, K. A novel bacterial cellulose membrane immobilized with human umbilical cord mesenchymal stem cells-derived exosome prevents epidural fibrosis. Int. J. Nanomed. 2018, ume 13, 5257–5273. [Google Scholar] [CrossRef] [Green Version]
- Le, A.X.; Roger, D.E.; Dawson, E.G.; Kropf, M.A.; De Grange, D.A.; Delamarter, R.B. Unrecognized durotomy after lumbar discectomy: A report of four cases associated with the use of ADCON-L. Spine 2001, 26, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Üstün, Y.; Engin-Ustun, Y.; Ovayolu, A.; Meydanli, M.M.; Temel, I.; Kafkasli, A. The effect of resveratrol on prevention of the development of postoperative adhesions in a rat model. Gynecol. Endocrinol. 2007, 23, 522–526. [Google Scholar] [CrossRef]
- Sogutlu, G.; Karabulut, A.B.; Ara, C.; Cinpolat, O.; Isik, B.; Piskin, T.; Celik, O. The effect of resveratrol on surgery-induced peritoneal adhesions in an experimental model. Cell Biochem. Funct. 2007, 25, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Yu, L.; Feng, T.; Yin, X.; Liu, T.; Dong, L. Physicochemical characterization of the polysaccharide from Bletilla striata: Effect of drying method. Carbohydr. Polym. 2015, 125, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Li, Q.; Wang, Y.; Wang, C. Two natural glucomannan polymers, from Konjac and Bletilla, as bioactive materials for pharmaceutical applications. Biotechnol. Lett. 2015, 37, 1–8. [Google Scholar] [CrossRef]
- He, X.; Wang, X.; Fang, J.; Zhao, Z.; Huang, L.; Guo, H.; Zheng, X. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J. Ethnopharmacol. 2017, 195, 20–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; He, Y.; Chen, Z.; Shi, J.; Qu, Y.; Zhang, J. Effect of Polysaccharides from Bletilla striata on the Healing of Dermal Wounds in Mice. Evid.-Based Complement. Altern. Med. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Pan, Y.; Chen, J. Chemical Constituents, Pharmacologic Properties, and Clinical Applications of Bletilla striata. Front. Pharmacol. 2019, 10, 1168. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Chen, S.; Wang, Y.; Jiang, H.; Yin, H. A new glucomannan from Bletilla striata: Structural and anti-fibrosis effects. Fitoterapia 2014, 92, 72–78. [Google Scholar] [CrossRef]
- Thacker, M.; Tseng, C.-L.; Chang, C.-Y.; Jakfar, S.; Chen, H.Y.; Lin, F.-H. Mucoadhesive Bletilla striata Polysaccharide-Based Artificial Tears to Relieve Symptoms and Inflammation in Rabbit with Dry Eyes Syndrome. Polymers 2020, 12, 1465. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-L.; Lin, Y.-Y.; Sadhasivam, S.; Kuan, C.-Y.; Chi, C.-Y.; Dong, G.-C.; Lin, F.-H. Efficacy of Bletilla striata polysaccharide on hydrogen peroxide-induced apoptosis of osteoarthritic chondrocytes. J. Polym. Res. 2018, 25, 49. [Google Scholar] [CrossRef]
- Einhaus, S.L.; Robertson, J.T.; Dohan, C.F.; Wujek, J.R.; Ahmad, S. Reduction of Peridural Fibrosis After Lumbar Laminotomy and Discectomy in Dogs by a Resorbable Gel (ADCON-L). Spine 1997, 22, 1440–1446. [Google Scholar] [CrossRef]
- He, Y.; Revel, M.; Loty, B. A Quantitative Model of Post-laminectomy Scar Formation. Effects of a nonsteroidal anti-inflammatory drug. Spine 1995, 20, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Hinton, J.L.; Warejcka, D.J.; Mei, Y.; McLendon, R.E.; Laurencin, C.; Lucas, P.; Robinson, J.S. Inhibition of Epidural Scar Formation After Lumbar Laminectomy in the Rat. Spine 1995, 20, 564–570. [Google Scholar] [CrossRef]
- Kaplan, S.; Morgan, J.A.; Bisleri, G.; Cheema, F.H.; Akman, H.O.; Topkara, V.K.; Oz, M.C. Effects of Resveratrol in Storage Solution on Adhesion Molecule Expression and Nitric Oxide Synthesis in Vein Grafts. Ann. Thorac. Surg. 2005, 80, 1773–1778. [Google Scholar] [CrossRef] [PubMed]
- Smoliga, J.M.; Blanchard, O. Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability is the Problem, What is the Solution? Molecules 2014, 19, 17154–17172. [Google Scholar] [CrossRef] [PubMed]
- Francioso, A.; Mastromarino, P.; Restignoli, R.; Boffi, A.; D’Erme, M.; Mosca, L. Improved Stability of trans-Resveratrol in Aqueous Solutions by Carboxymethylated (1,3/1,6)-β-d-Glucan. J. Agric. Food Chem. 2014, 62, 1520–1525. [Google Scholar] [CrossRef]
- Chen, S.-H.; Chou, P.-Y.; Chen, Z.-Y.; Chuang, D.C.-C.; Hsieh, S.-T.; Lin, F.-H. An electrospun nerve wrap comprising Bletilla striata polysaccharide with dual function for nerve regeneration and scar prevention. Carbohydr. Polym. 2020, 250, 116981. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, W.; Sun, W.; Li, X.; Duan, J.; Cui, J.; Feng, Z.; Mansour, H.M. Influence of the carboxymethyl chitosan anti-adhesion solution on the TGF-β1 in a postoperative peritoneal adhesion rat. J. Mater. Sci. Mater. Electron. 2013, 24, 2549–2559. [Google Scholar] [CrossRef] [PubMed]
- Masuko, K. Anti-inflammatory effects of hyaluronan in arthritis therapy: Not just for viscosity. Int. J. Gen. Med. 2009, 2, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Rinkevich, Y.; Walmsley, G.G.; Hu, M.S.; Maan, Z.N.; Newman, A.; Drukker, M.; Januszyk, M.; Krampitz, G.W.; Gurtner, G.C.; Lorenz, H.P.; et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 2015, 348, aaa2151. [Google Scholar] [CrossRef] [Green Version]
- Ropka-Molik, K.; Eckert, R.; Piórkowska, K. The expression pattern of myogenic regulatory factors MyoD, Myf6 and Pax7 in postnatal porcine skeletal muscles. Gene Expr. Patterns 2011, 11, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, S.; Hoshikawa, S.; Ueno, T.; Hirata, M.; Saito, T.; Ikeda, T.; Kawaguchi, H.; Nakamura, K.; Tanaka, S.; Ogata, T. SOX10 Transactivates S100B to Suppress Schwann Cell Proliferation and to Promote Myelination. PLoS ONE 2014, 9, e115400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Yeo, Y.; Highley, C.B.; Bellas, E.; Benitez, C.A.; Kohane, D.S. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 2007, 28, 975–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-Y.; Lin, T.-C.; Chiang, C.-Y.; Wey, S.-L.; Lin, F.-H.; Yang, K.-C.; Chang, C.-H.; Hu, M.-H. Antifibrotic Effect of Bletilla striata Polysaccharide-Resveratrol-Impregnated Dual-Layer Carboxymethyl Cellulose-Based Sponge for The Prevention of Epidural Fibrosis after Laminectomy. Polymers 2021, 13, 2129. https://doi.org/10.3390/polym13132129
Chen H-Y, Lin T-C, Chiang C-Y, Wey S-L, Lin F-H, Yang K-C, Chang C-H, Hu M-H. Antifibrotic Effect of Bletilla striata Polysaccharide-Resveratrol-Impregnated Dual-Layer Carboxymethyl Cellulose-Based Sponge for The Prevention of Epidural Fibrosis after Laminectomy. Polymers. 2021; 13(13):2129. https://doi.org/10.3390/polym13132129
Chicago/Turabian StyleChen, Hsuan-Yu, Tzu-Chieh Lin, Chih-Yung Chiang, Shiuan-Li Wey, Feng-Huei Lin, Kai-Chiang Yang, Chih-Hao Chang, and Ming-Hsiao Hu. 2021. "Antifibrotic Effect of Bletilla striata Polysaccharide-Resveratrol-Impregnated Dual-Layer Carboxymethyl Cellulose-Based Sponge for The Prevention of Epidural Fibrosis after Laminectomy" Polymers 13, no. 13: 2129. https://doi.org/10.3390/polym13132129
APA StyleChen, H.-Y., Lin, T.-C., Chiang, C.-Y., Wey, S.-L., Lin, F.-H., Yang, K.-C., Chang, C.-H., & Hu, M.-H. (2021). Antifibrotic Effect of Bletilla striata Polysaccharide-Resveratrol-Impregnated Dual-Layer Carboxymethyl Cellulose-Based Sponge for The Prevention of Epidural Fibrosis after Laminectomy. Polymers, 13(13), 2129. https://doi.org/10.3390/polym13132129