Characterization and Ex Vivo Application of Indocyanine Green Chitosan Patches in Dura Mater Laser Bonding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ICG-Loaded Solders
2.2. The Ex Vivo Porcine Model
2.3. Laser Bonding
2.4. Fluid Leakage Pressure Test
2.5. Histology Examination
2.6. Statistical Analysis
3. Results
3.1. Optimization of ICG Optical Properties in Solder Solution
3.2. Characterization of ICG-Loaded Chitosan Patches
3.3. The Ex Vivo Tests in Dura Mater Laser Bonding
3.4. Temperature Rise Due to the Laser Bonding Procedure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demirsoy, K.K.; Kurt, G. Use of laser systems in orthodontics. Turkish J. Orthod. 2020, 33, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Ekstein, S.F.; Wyles, S.P.; Moran, S.L.; Meves, A. Keloids: A review of therapeutic management. Int. J. Dermatol. 2020. [Google Scholar] [CrossRef]
- Moshirfar, M.; Shah, T.J.; Masud, M.; Linn, S.H.; Ronquillo, Y.; Hoopes, P.C. Surgical options for retreatment after small-incision lenticule extraction: Advantages and disadvantages. J. Cataract Refract. Surg. 2018, 44, 1384–1389. [Google Scholar] [CrossRef] [PubMed]
- Menabuoni, L.; Canovetti, A.; Rossi, F.; Malandrini, A.; Lenzetti, I.; Pini, R. The "anvil" profile in femtosecond laser-assisted penetrating keratoplasty. Acta Ophthalmol. 2013, 91, e494–e495. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.J.; Morley, J.W.; Stoodley, M.A.; Lauto, A.; Mahns, D.A. Nerve repair: Toward a sutureless approach. Neurosurg. Rev. 2014, 37, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Piazza, R.; Micheletti, F.; Condino, S.; Magni, G.; Berchiolli, R.N.; De Simone, P.; Ferrari, V.; Ferrari, M.; Pini, R.; Rossi, F. In situ diode laser fenestration: An ex-vivo evaluation of irradiation effects on human aortic tissue. J. Biophotonics 2019, 12. [Google Scholar] [CrossRef]
- Perveen, A.; Molardi, C.; Fornaini, C. Applications of laser welding in dentistry: A state-of-the-art review. Micromachines 2018, 9, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, E.A.; Rentschler, M.E. Energy-Based Tissue Fusion for Sutureless Closure: Applications, Mechanisms, and Potential for Functional Recovery. Annu. Rev. Biomed. Eng. 2018, 20, 1–20. [Google Scholar] [CrossRef]
- Cicchi, R.; Rossi, F.; Tatini, F.; Bacci, S.; De Siena, G.; Alfieri, D.; Pini, R.; Pavone, F. Irradiation with EMOLED improves the healing process in superficial skin wounds. In Proceedings of the SPIE 8926, Photonic Therapeutics and Diagnostics X, San Francisco, CA, USA, 1–6 February 2014; SPIE: Bellingham, WA, USA, 2014; Volume 8926, p. 892604. [Google Scholar]
- Rossi, F.; Matteini, P.; Ratto, F.; Menabuoni, L.; Lenzetti, I.; Pini, R. Laser Tissue Welding In Ophthalmic Surgery. J. Biophotonics 2008, 1, 331–342. [Google Scholar] [CrossRef]
- Buzzonetti, L.; Capozzi, P.; Petrocelli, G.; Valente, P.; Petroni, S.; Menabuoni, L.; Rossi, F.; Pini, R. Laser welding in penetrating keratoplasty and cataract surgery in pediatric patients: Early results. J. Cataract Refract. Surg. 2013, 39, 1829–1834. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Matteini, P.; Menabuoni, L.; Lenzetti, I.; Pini, R. Sutureless closure of scleral wounds in animal models by the use of laser welded biocompatible patches. In Proceedings of the SPIE 7885, Ophthalmic Technologies XXI, San Francisco, CA, USA, 22–27 January 2011; SPIE: Bellingham, WA, USA, 2011; Volume 7885, p. 78850P. [Google Scholar]
- Ripamonti, U. Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues. J. Cell. Mol. Med. 2004, 8, 169–180. [Google Scholar] [CrossRef]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
- Milanesi, A.; Magni, G.; Centi, S.; Schifino, G.; Aluigi, A.; Khlebtsov, B.N.; Cavigli, L.; Barucci, A.; Khlebtsov, N.G.; Ratto, F.; et al. Optically activated and interrogated plasmonic hydrogels for applications in wound healing. J. Biophotonics 2020, 13, e202000135. [Google Scholar] [CrossRef]
- Posati, T.; Ferroni, C.; Aluigi, A.; Guerrini, A.; Rossi, F.; Tatini, F.; Ratto, F.; Marras, E.; Gariboldi, M.B.; Sagnella, A.; et al. Mild and Effective Polymerization of Dopamine on Keratin Films for Innovative Photoactivable and Biocompatible Coated Materials. Macromol. Mater. Eng. 2018, 303, 1700653. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Matteini, P.; Ratto, F.; Rossi, F.; Pini, R. Emerging concepts of laser-activated nanoparticles for tissue bonding. J. Biomed. Opt. 2012, 17, 010701. [Google Scholar] [CrossRef]
- Matteini, P.; Ratto, F.; Rossi, F.; Centi, S.; Dei, L.; Pini, R. Chitosan Films Doped with Gold Nanorods as Laser-Activatable Hybrid Bioadhesives. Adv. Mater. 2010, 22, 4313–4316. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Matteini, P.; Ratto, F.; Pini, R.; Iacoangeli, M.; Giannoni, L.; Fortuna, D.; Di Cicco, E.; Corbara, S.; Dallari, S. Laser bonding with ICG-infused chitosan patches: Preliminary experiences in suine dura mater and vocal folds. In Proceedings of the SPIE 9129 Biophotonics: Photonic Solutions for Better Health Care IV, Brussels, Belgium, 15–16 April 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9129, p. 91292L. [Google Scholar]
- Rossi, F.; Matteini, P.; Ratto, F.; Menabuoni, L.; Lenzetti, I.; Pini, R. Laser welding of chitosan-GNRs films for the closure of a capsulorhexis. In Proceedings of the Ophthalmic Technologies XXI, San Francisco, CA, USA, 22–27 January 2011; SPIE: Bellingham, WA, USA, 2011; Volume 7885, p. 78851O. [Google Scholar]
- Esposito, G.; Rossi, F.; Matteini, P.; Scerrati, A.; Puca, A.; Albanese, A.; Rossi, G.; Ratto, F.; Maira, G.; Pini, R. In vivo laser assisted microvascular repair and end-to-end anastomosis by means of indocyanine green-infused chitosan patches: A pilot study. Lasers Surg. Med. 2013, 45, 318–325. [Google Scholar] [CrossRef]
- Forer, B.; Vasileyev, T.; Gil, Z.; Brosh, T.; Kariv, N.; Katzir, A.; Fliss, D.M. CO2 laser fascia to dura soldering for pig dural defect reconstruction. Skull Base 2007, 17, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Fung, Y.-C. Biomechanics; Springer: New York, NY, USA, 1993; ISBN 978-1-4419-3104-7. [Google Scholar]
- Protasoni, M.; Sangiorgi, S.; Cividini, A.; Culuvaris, G.T.; Tomei, G.; Dell’Orbo, C.; Raspanti, M.; Balbi, S.; Reguzzoni, M. The collagenic architecture of human dura mater: Laboratory investigation. J. Neurosurg. 2011, 114, 1723–1730. [Google Scholar] [CrossRef] [Green Version]
- Kinaci, A.; Bergmann, W.; Bleys, R.L.A.W.; van der Zwan, A.; van Doormaal, T.P.C. Histologic comparison of the dura mater among species. Comp. Med. 2020, 70, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Kizmazoglu, C.; Aydin, H.E.; Kaya, I.; Atar, M.; Husemoglu, B.; Kalemci, O.; Sozer, G.; Havitcioglu, H. Laboratory Investigation Comparison of Biomechanical Properties of Dura Mater Substitutes and Cranial Human Dura Mater: An In Vitro Study. J. Korean Neurosurg Soc. 2019, 62, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fickweiler, S.; Szeimies, R.M.; Bäumler, W.; Steinbach, P.; Karrer, S.; Goetz, A.E.; Abels, C.; Hofstädter, F.; Landthaler, M. Indocyanine green: Intracellular uptake and phototherapeutic effects in vitro. J. Photochem. Photobiol. B Biol. 1997, 38, 178–183. [Google Scholar] [CrossRef]
- Jung, B.; Vullev, V.I.; Anvari, B. Revisiting indocyanine green: Effects of serum and physiological temperature on absorption and fluorescence characteristics. IEEE J. Sel. Top. Quantum Electron. 2014, 20. [Google Scholar] [CrossRef] [Green Version]
- Yaseen, M.A.; Yu, J.; Wong, M.S.; Anvari, B. Stability assessment of indocyanine green within dextran-coated mesocapsules by absorbance spectroscopy. J. Biomed. Opt. 2007, 12, 064031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandoval-Sánchez, J.H.; Ramos-Zúñiga, R.; Luquín De Anda, S.; López-Dellamary, F.; Gonzalez-Castañeda, R.; Ramírez-Jaimes, J.D.L.C.; Jorge-Espinoza, G. A new bilayer chitosan scaffolding as a dural substitute: Experimental evaluation. World Neurosurg. 2012, 77, 577–582. [Google Scholar] [CrossRef]
- Feng, P.; Luo, Y.; Ke, C.; Qiu, H.; Wang, W.; Zhu, Y.; Hou, R.; Xu, L.; Wu, S. Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Front. Bioeng. Biotechnol. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Puca, A.; Albanese, A.; Esposito, G.; Maira, G.; Tirpakova, B.; Rossi, G.; Mannocci, A.; Pini, R. Diode laser-assisted carotid bypass surgery: An experimental study with morphological and immunohistochemical evaluations. Neurosurgery 2006, 59, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Hou, C.; Dou, Y.; Lin, Y.; Lei, D. Experimental study on long-term prevention effect of chitosan electrospun membrane on cerebrospinal fluid leakage. Chin. J. Reparative Reconstr. Surg. 2014, 28, 993–997. [Google Scholar]
- Lauto, A.; Hook, J.; Doran, M.; Camacho, F.; Poole-Warren, L.A.; Avolio, A.; Foster, L.J.R. Chitosan adhesive for laser tissue repair: In vitro characterization. Lasers Surg. Med. 2005, 36, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Foster, L.J.R.; Karsten, E. A chitosan based, laser activated thin film surgical adhesive, “Surgilux”: Preparation and demonstration. J. Vis. Exp. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauto, A.; Stoodley, M.; Marcel, H.; Avolio, A.; Sarris, M.; McKenzie, G.; Sampson, D.D.; Foster, L.J.R. In vitro and in vivo tissue repair with laser-activated chitosan adhesive. Lasers Surg. Med. 2007, 39, 19–27. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, F.; Magni, G.; Colasanti, R.; Banchelli, M.; Iacoangeli, M.; Carrassi, E.; Aiudi, D.; Di Rienzo, A.; Giannoni, L.; Pieri, L.; et al. Characterization and Ex Vivo Application of Indocyanine Green Chitosan Patches in Dura Mater Laser Bonding. Polymers 2021, 13, 2130. https://doi.org/10.3390/polym13132130
Rossi F, Magni G, Colasanti R, Banchelli M, Iacoangeli M, Carrassi E, Aiudi D, Di Rienzo A, Giannoni L, Pieri L, et al. Characterization and Ex Vivo Application of Indocyanine Green Chitosan Patches in Dura Mater Laser Bonding. Polymers. 2021; 13(13):2130. https://doi.org/10.3390/polym13132130
Chicago/Turabian StyleRossi, Francesca, Giada Magni, Roberto Colasanti, Martina Banchelli, Maurizio Iacoangeli, Erika Carrassi, Denis Aiudi, Alessandro Di Rienzo, Luca Giannoni, Laura Pieri, and et al. 2021. "Characterization and Ex Vivo Application of Indocyanine Green Chitosan Patches in Dura Mater Laser Bonding" Polymers 13, no. 13: 2130. https://doi.org/10.3390/polym13132130
APA StyleRossi, F., Magni, G., Colasanti, R., Banchelli, M., Iacoangeli, M., Carrassi, E., Aiudi, D., Di Rienzo, A., Giannoni, L., Pieri, L., Dallari, S., Pini, R., & Matteini, P. (2021). Characterization and Ex Vivo Application of Indocyanine Green Chitosan Patches in Dura Mater Laser Bonding. Polymers, 13(13), 2130. https://doi.org/10.3390/polym13132130