Flow Characteristics, Mechanical, Thermal, and Thermomechanical Properties, and 3D Printability of Biodegradable Polylactide Containing Boehmite at Different Loadings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Samples
2.3. Characterization
3. Results
3.1. Flow Properties
3.2. Chain Extension
3.3. BA Distribution
3.4. Non-Isothermal Crystallization of the Modified PLA Systems
3.5. HDT
3.6. Thermomechanical Properties
3.7. Tensile
3.8. 3DP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ojijo, V.; Ray, S.S. Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 2015, 80, 1–17. [Google Scholar] [CrossRef]
- Das, K.; Ray, S.S.; Chapple, S.; Wesley-Smith, J. Mechanical, thermal, and fire properties of biodegradable polylactide/boehmite alumina composites. Ind. Eng. Chem. Res. 2013, 52, 6083–6091. [Google Scholar] [CrossRef]
- Kocsis, J.K. Nano and Micro Mechanics of Polymer Blends and Composites; Hanser: Munich, Germany, 2009; Volume 4, pp. 425–470. [Google Scholar]
- Streller, R.C.; Thomann, R.; Torno, O.; Mülhaupt, R. Morphology, crystallization behavior, and mechanical properties of isotactic poly (propylene) nanocomposites based on organophilic boehmite. Macromol. Mater. Eng. 2009, 294, 380–388. [Google Scholar] [CrossRef]
- Siengchin, S.; Karger, J.K.; Thoman, R. Nanofilled and/or toughened POM composites produced by water-mediated melt compounding: Structure and mechanical properties. eXPRESS Polym. Lett. 2008, 2, 746–756. [Google Scholar] [CrossRef]
- Mallucelli, G.; Alongi, J.; Gioffredi, E.; Lazzari, M. Thermal, rheological, and barrier properties of waterborne acrylic nanocomposite coatings based on boehmite or organo-modified montmorillonite. J. Therm. Anal. Calorim. 2013, 111, 1303–1310. [Google Scholar] [CrossRef]
- Najafi, N.; Heuzey, M.C.; Carreau, P.J. Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos. Sci. Technol. 2012, 72, 608–615. [Google Scholar] [CrossRef]
- Liu, M.; Pu, M.; Ma, H. Preparation structure and thermal properties of polylactide/speiolite nanocomposites with and without organic modifiers. Compos. Sci. Technol. 2012, 72, 1508–1514. [Google Scholar] [CrossRef]
- Nijenhuis, A.J.; Colstee, E.; Grijpma, D.W.; Pennings, A.J. High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: Thermal characterization and physical properties. Polymer 1996, 37, 5849–5857. [Google Scholar] [CrossRef]
- Malwela, T.; Khumalo, V.M.; Selayian, R.; Ray, S.S. Characterization of polypropylene/polystyrene boehmite alumina nanocomposites: Impact of filler surface modification on the mechanical, thermal, and rheological properties. J. Appl. Polym. Sci. 2018. [Google Scholar] [CrossRef]
- Nieddu, E.; Mazzucco, L.; Gentile, P.; Benko, T.; Balbo, V.; Mandrile, R.; Ciardelli, G. Preparation and biodegradation of clay composites of PLA. React. Funct. Polym. 2009, 69, 371–379. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H.; Fu, Q. Kinetics-controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO2 particles. Polymer 2004, 45, 1913. [Google Scholar] [CrossRef]
- Agwuncha, S.C.; Ray, S.S.; Jayaramudu, J.; Khoathane, C.; Sadiku, R. Influence of boehmite nanoparticle loading on the mechanical, thermal and rheological properties of biodegradable polylactite/poly (E-caprolactone) blends. Macromol. Mater. Eng. 2015, 300, 31–47. [Google Scholar] [CrossRef]
- Adhikari, R.; Brostow, W.; Datashvili, T.; Henning, S.; Menard, B.; Menard, K.; Michler, G. Effect of surfactant treated boehmite nanoparticles on properties of block copolymers. Mater. Res. Innov. 2012, 16, 19. [Google Scholar] [CrossRef]
- Bocchini, S.; Therias, S.M.; Gardette, J.L.; Camino, G. Influence of nanodispersed boehmite on polypropylene photooxidation. Polym. Degrad. Stab. 2007, 92, 1847–1856. [Google Scholar] [CrossRef]
- Pedrazzoli, D.; Khumalo, V.M.; Kocsis, J.K.; Pegoretti, A. Thermal, viscoelastic and mechanical behavior of polypropylene with synthetic boehmite alumina nanoparticles. Polym. Test. 2014, 35, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Khumalo, V.M.; Kocsis, J.K.; Thomann, R. Polyethylene/synthetic boehmite alumina nanocomposites: Structure, mechanical, and perforation impact properties. J. Mater. Sci. 2011, 46, 422–428. [Google Scholar] [CrossRef]
- Duangphet, S.; Szegda, D.; Song, J.; Tarverdi, K. The effect of epoxy-functionalized chain extender on crystal growth and morphology of poly 9 3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). KKU Eng. J. 2016, 43, 470–473. [Google Scholar]
- Tuba, F.; Khumalo, V.M.; Kocsis, J.K. Essential work of fractured of Poly caprolactone/boehmide alumina nanocomposites: Effect of surface coatin. J. Appl. Polym. Sci. 2013. [Google Scholar] [CrossRef] [Green Version]
- Najafi, N.; Heuzey, M.C.; Carreau, P.J.; Wood-Adams, P.M. Control of thermal degradation of polylactide(pla)-clay nanocomposites using chain extenders. Polym. Degrad. Stab. 2012, 97, 554–565. [Google Scholar] [CrossRef]
- Villalobos, M.; Awojulu, A.; Greeley, T.; Turco, G.; Deeter, G. Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy 2006, 31, 3227–3234. [Google Scholar] [CrossRef]
- Pilla, S.; Kim, S.G.; Auer, G.K.; Gong, S.; Park, C.B. Microcellular extrusion foaming of polylactide with chain-extender. Polym. Eng. Sci. 2009, 49, 1653–1660. [Google Scholar] [CrossRef]
- Arruda, L.C.; Magaton, M.; Bretas, R.E.S.; Ueki, M.M. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym. Test. 2015, 42, 27–37. [Google Scholar] [CrossRef]
- Kong, Y.; Hay, J.N. The measurement of the crystallinity of polymers by DSC. Polymer 2002, 43, 3873–3878. [Google Scholar] [CrossRef]
- Ahmed, A.S.M.; Saeed, H.A.M.; Eltahir, Y.A.; Xia, Y.M.; Wang, Y. Modification of PLA with chain extender. Appl. Mech. Mater. 2015, 716–717, 44–47. [Google Scholar]
- Batakliev, T.; Doycheva, I.P.; Angelov, V.; Georgiev, V.; Ivanov, E.; Kotsilkova, R.; Casa, M.; Cirillo, C.; Adami, R.; Sarno, M.; et al. Effects of graphene nanoplatelets and multiwall carbon nanotube on the structure and mechanical properties of Polylactide composites. Appl. Sci. 2019, 9, 469. [Google Scholar] [CrossRef] [Green Version]
- Boll, A.D.B.; Fiedle, B. Prediction of thermal exposure and mechanical behavior of epoxy resin using artficial neural networks and fourier transform infrared spectroscopy. Polymers 2019, 11, 363. [Google Scholar] [CrossRef] [Green Version]
- Dickie, S.A.; McQuillan, A.J. In-situ infrared spectroscopic studies of adsorption processes on boehmite particle films: Exchange of surface hydroxyl groups observed upon chelation by acetylacetone. Langmuir 2004, 20, 111630–111636. [Google Scholar] [CrossRef]
- Ram, S. Infrared spectral study of molecular vibrations in amorphous, nanocrystalline and AlO(OH) αH2O bulk crystals. Infrared Phys. Technol. 2001, 42, 547–560. [Google Scholar] [CrossRef]
- Inata, H.; Matsumura, S. Chain extenders for polyesters. I. addition-type chain extenders reactive with carboxyl end groups of polyesters. J. Appl. Polym. Sci. 1985, 30, 3325–3337. [Google Scholar] [CrossRef]
- Aharoni, S.M.; Forbes, C.E.; Hammond, W.B.; Hindenlang, D.M.; Mares, F.; O’Brien, K.; Sedgwick, R.D. High-Temperature reactions of hydroxyl and carboxyl PET chain end groups in the presence of aromatic phosphite. J. Polym. Sci. Part A Polym. Chem. 1986, 24, 1281–1296. [Google Scholar] [CrossRef]
- Wang, Y.; Chunhua, F.U.; Yongxiang, L.U.O.; Changshun, R.; Zang, Y.; Ya, F.U. Melt synthesis and characterization of poly(L-lactic Acid) chain linked by multifunctional epoxy compound. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2010, 25. [Google Scholar] [CrossRef]
- Zhai, W.; Ko, Y.; Zhu, W.; Wong, A.; Park, C.B. A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. Int. J. Mol. Sci. 2009, 10, 5381–5397. [Google Scholar] [CrossRef] [PubMed]
- Quero, E.; Muller, A.J.; Signori, F.; Coltelli, M.B.; Bronco, S. Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate. Macromol. Chem. Phys 2012, 213, 36–48. [Google Scholar] [CrossRef]
- Ojijo, V.; Ray, S.S.; Sadiku, R. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly [(butylene succinate)-co-adipate]. ACS Appl. Mater. Interfaces 2012, 12, 6690–6701. [Google Scholar] [CrossRef]
- Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y. Blends of linear and long-chain branched poly (l-lactide) with high melt strength and fast crystallization rate. Ind. Eng. Chem. Res. 2012, 51, 10088–10099. [Google Scholar] [CrossRef]
- Nofar, M.; Zhu, W.; Park, C.B.; Randall, J. Crystallization kinetics of linear and long-chain-branched polylactide. Ind. Eng. Chem. Res. 2011, 50, 13789–13798. [Google Scholar] [CrossRef]
- Yeh, J.T.; Yang, M.G.; Wu, C.H.; Wu, X.; Wu, C.S. Study on the crystallization kinetic and characterization of poly (lactic acid) and poly(vinyl alcohol) blends. Polym. Plast. Tech. Eng. 2008, 47, 1289–1296. [Google Scholar] [CrossRef]
- Tabatabaei, S.H.; Ajji, A. Crystal structure and orientation of uniaxially and biaxially oriented PLA and PP nanoclay composite films. J. Appl. Polym. Sci. 2011, 124, 4854–4863. [Google Scholar] [CrossRef]
- Zhang, M.; Thomas, N.L. Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Adv. Pol. Tech. 2011, 30, 67–79. [Google Scholar] [CrossRef]
- Bucci, D.Z.; Tavares, L.B.B.; Sell, I. PHB packaging for the storage of food products. Polym. Test. 2005, 24, 564–571. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Norton, M.G. X-ray Diffraction: A Practical Approach; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zhou, Y.; Lu, Y.; Wang, B.; Shem, C.; Chen, J.; Zhang, B. Later stage melting of isotactic polypropylene. Macromolecules 2020, 53, 2136–2144. [Google Scholar] [CrossRef]
- Becker, G.W.; Bottenbruch, L.; Binsack, R.; Braun, D. Engineerinng Thermoplastics Polyamides; Hanser Verlag: Munich, Germany, 1998; ISBN 3-446-16486-3. [Google Scholar]
- Farid, T.; Herrera, V.N.; Kristiina, O. Investigation of crystalline structure of plasticized poly (lactic acid)/Banana nanofibers composites. Mater. Sci. Eng. 2018, 369, 012031. [Google Scholar] [CrossRef]
Sample Code | PLA | DCP | Joncryl | BA (wt.%) |
---|---|---|---|---|
PLA | 100 | - | - | - |
PLA/DCP | 99.95 | 0.05 | - | - |
PLA/J | 99.40 | - | 0.6 | - |
PLA/DCP/J | 99.35 | 0.05 | 0.6 | - |
PLA/BA | 98.00 | - | - | 2 |
PLA/DCP/BA | 97.95 | 0.05 | - | 2 |
PLA/J/BA | 97.40 | - | 0.6 | 2 |
PLA/BA2/DCP/J | 97.35 | 0.05 | 0.6 | 2 |
BA3 | 96.35 | 0.05 | 0.6 | 3 |
BA4 | 95.35 | 0.05 | 0.6 | 4 |
BA5 | 94.35 | 0.05 | 0.6 | 5 |
BA6 | 93.35 | 0.05 | 0.6 | 6 |
BA10 | 89.35 | 0.05 | 0.6 | 10 |
BA20 | 79.35 | 0.05 | 0.6 | 20 |
Sample Name | MFR(g/10 min) Using 2.16 kg Load at 190 °C |
---|---|
PLA | 15.49 |
PLA/DCP | 10.49 |
PLA/J | 7.71 |
PLA/DCP/J | 7.66 |
PLA/BA | 11.19 |
PLA/DCP/BA | 9.94 |
PLA/J/BA | 5.86 |
PLA/DCP/J/BA2 | 6.69 |
BA3 | 7.01 |
BA4 | 7.78 |
BA5 | 8.11 |
BA6 | 9.93 |
BA10 | 10.50 |
BA20 | 11.52 |
Sample Code | Tcc (°C) | ΔHcc (J/g) | Xcc (%) | ΔHm (J/g) | Tm (°C) | Xm (%) | Xc (%) |
---|---|---|---|---|---|---|---|
Neat PLA | 110.24 ± 0.8 | 31.21 ± 1.9 | 33.31 | 33.46 ± 0.7 | 169.11 ± 0.1 | 35.71 | 2.40 |
PLA/DCP | 102.72 ± 0.1 | 26.72 ± 0.1 | 28.67 | 31.48 ± 0.1 | 167.49 ± 0.1 | 33.80 | 5.13 |
PLA/J | 108.09 ± 0.1 | 21.72 ± 0.1 | 23.32 | 29.30 ± 0.1 | 165.78 ± 0.1 | 31.46 | 8.14 |
PLA/DCP/J | - | - | - | 28.77 ± 0.1 | 164.00 ± 0.1 | 31.08 | - |
PLA/BA | 104.98 ± 0.7 | 29.47 ± 0.02 | 32.09 | 32.56 ± 0.3 | 167.63 ± 0.7 | 35.46 | 3.37 |
PLA/DCP/BA | 105.36 ± 0.3 | 19.81 ± 0.4 | 21.58 | 23.15 ± 0.9 | 167.28 ± 0.3 | 25.22 | 3.64 |
PLA/J/BA | 107.02 ± 0.9 | 27.20 ± 1.8 | 29.80 | 29.35 ± 0.7 | 166.65 ± 0.5 | 32.16 | 2.36 |
PLA/BA2/DCP/J | 105.98 ± 1.0 | 24.47 ± 0.5 | 26.98 | 30.37 ± 0.1 | 167.14 ± 0.3 | 33.48 | 6.50 |
BA3 | 106.0 ± 0.6 | 24.5 ± 0.9 | 32.0 | 31.4 ± 0.7 | 165.51 ± 0.4 | 33.3 | 2.8 |
BA4 | 102.9 ± 0.9 | 28.9 ± 0.4 | 32.6 | 32.5 ± 0.7 | 166.60 ± 1.1 | 34.8 | 3.8 |
BA5 | 105.6 ± 0.3 | 29.10 ± 0.6 | 31.2 | 32.0 ± 0.8 | 166.72 ± 0.8 | 36.4 | 5.0 |
BA6 | 106.3 ± 1.2 | 27.60 ± 0.9 | 30.4 | 30.8 ± 0.2 | 167.10 ± 0.5 | 35.2 | 4.8 |
BA10 | 108.8 ± 0.9 | 25.01 ± 0.8 | 29.87 | 32.47 ± 0.1 | 167.98 ± 0.6 | 38.78 | 8.91 |
BA20 | 110.1 ± 0.6 | 26.28 ± 1.2 | 35.34 | 32.38 ± 0.7 | 168.53 ± 1.5 | 43.55 | 8.21 |
Sample Name | 2θ | θ | FWHM | Crystal Size (nm) |
---|---|---|---|---|
BA | 13.91 | 6.96 | 0.038397 | 36.4 |
Neat PLA | 16.29 | 8.15 | 0.119381 | 11.7 |
PLA/DCP | 16.47 | 8.24 | 0.153414 | 9.1 |
PLA/J | 15.29 | 7.65 | 0.213628 | 6.5 |
PLA/DCP/J | 16.31 | 8.16 | 0.008029 | 174.4 |
PLA/BA | 16.44 | 8.22 | 0.117286 | 12.0 |
PLA/DCP/BA | 16.40 | 8.20 | 0.176802 | 8.0 |
PLA/J/BA | 15.14 | 7.57 | 0.205251 | 6.8 |
PLA/BA2/DCP/J | 14.90 | 7.45 | 0.186576 | 7.5 |
BA3 | 16.46 | 8.23 | 0.135961 | 11.2 |
BA4 | 16.45 | 8.22 | 0.122696 | 12.4 |
BA5 | 16.44 | 8.22 | 0.106988 | 14.3 |
BA6 | 14.82 | 7.41 | 0.199142 | 7.6 |
BA10 | 16.61 | 8.30 | 0.135786 | 11.2 |
Sample Name | HDT (°C) |
---|---|
Neat PLA | 51.3 ± 0.21 |
PLA/DCP | 51.9 ± 1.48 |
PLA/J | 54.2 ± 0.40 |
PLA/DCP/J | 53.4 ± 0.29 |
PLA/BA | 53.0 ± 0.06 |
PLA/DCP/BA | 53.3 ± 0.38 |
PLA/J/BA | 54.0 ± 0.15 |
PLA/BA2/DCP/J | 53.1 ± 0.55 |
BA3 | 56.8 ± 0.91 |
BA4 | 60.2 ± 0.88 |
BA5 | 62.2 ± 0.49 |
BA6 | 66.7 ± 0.90 |
Sample Name | Tg °C | Storage Modulus [Pa] |
---|---|---|
PLA | 69.44 | 2.03 × 109 |
PLA/DCP | 67.36 | 1.50 × 109 |
PLA/J | 70.13 | 1.99 × 109 |
PLA/DCP/J | 70.83 | 2.62 × 109 |
PLA/BA | 68.06 | 2.38 × 109 |
PLA/DCP/BA | 68.75 | 2.45 × 109 |
PLA/J/BA | 69.24 | 2.56 × 109 |
PLA/BA2/DCP/J | 69.44 | 2.63 × 109 |
BA3 | 68.22 | 2.34 × 109 |
BA4 | 69.39 | 2.27 × 109 |
BA5 | 69.84 | 2.20 × 109 |
BA6 | 67.76 | 2.29 × 109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makwakwa, D.; Ojijo, V.; Bandyopadhyay, J.; Ray, S.S. Flow Characteristics, Mechanical, Thermal, and Thermomechanical Properties, and 3D Printability of Biodegradable Polylactide Containing Boehmite at Different Loadings. Polymers 2021, 13, 2019. https://doi.org/10.3390/polym13122019
Makwakwa D, Ojijo V, Bandyopadhyay J, Ray SS. Flow Characteristics, Mechanical, Thermal, and Thermomechanical Properties, and 3D Printability of Biodegradable Polylactide Containing Boehmite at Different Loadings. Polymers. 2021; 13(12):2019. https://doi.org/10.3390/polym13122019
Chicago/Turabian StyleMakwakwa, Dimakatso, Vincent Ojijo, Jayita Bandyopadhyay, and Suprakas Sinha Ray. 2021. "Flow Characteristics, Mechanical, Thermal, and Thermomechanical Properties, and 3D Printability of Biodegradable Polylactide Containing Boehmite at Different Loadings" Polymers 13, no. 12: 2019. https://doi.org/10.3390/polym13122019
APA StyleMakwakwa, D., Ojijo, V., Bandyopadhyay, J., & Ray, S. S. (2021). Flow Characteristics, Mechanical, Thermal, and Thermomechanical Properties, and 3D Printability of Biodegradable Polylactide Containing Boehmite at Different Loadings. Polymers, 13(12), 2019. https://doi.org/10.3390/polym13122019