Binderless Thermal Insulation Panels Made of Spruce Bark Fibres
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Formaldehyde Content
3.2. Physical Properties
3.3. Thickness Swelling and Water Absorption after 24 h
3.4. Internal Bond
3.5. Thermal Conductivity (TC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pásztory, Z.; Mohácsiné, I.R.; Gorbacheva, G.; Börcsök, Z. The utilization of tree bark. Bioresources 2016, 11, 7859–7888. [Google Scholar] [CrossRef]
- Chow, P.; Nakayama, F.S.; Blahnik, B.; Youngquist, J.A.; Coffelt, T.A. Chemical constituents and physical properties of guayule wood and bark. Ind. Crop. Prod. 2008, 28, 303–308. [Google Scholar] [CrossRef]
- Jablonsky, M.; Nosalova, J.; Sladkova, A.; Haz, A.; Kreps, F.; Valka, J.; Miertus, S.; Frecer, V.; Ondrejovic, M.; Sima, J.; et al. Valorisation of softwood bark through extraction of utilizable chemicals. A review. Biotechnol. Adv. 2017, 35, 726–750. [Google Scholar] [CrossRef]
- Borysiuk, P.; Boruszewski, P.; Auriga, R.; Danecki, L.; Auriga, A.; Rybak, K.; Nowacka, M. Influence of a bark-filler on the properties of PLA biocomposites. J. Mater. Sci. 2021, 56, 9196–9208. [Google Scholar] [CrossRef]
- Aydin, I.; Demirkir, C.; Colak, S.; Colakoglu, G. Utilization of bark flours as additive in plywood manufacturing. Eur. J. Wood Prod. 2017, 75, 63–69. [Google Scholar] [CrossRef]
- Barbu, M.C.; Lohninger, Y.; Hofmann, S.; Kain, G.; Petutschnigg, A.; Tudor, E.M. Larch bark as a formaldehyde scavenger in thermal insulation panels. Polymers 2020, 12, 2632. [Google Scholar] [CrossRef]
- Sutrisno Alamsyah, E.M.; Syamsudin, T.S.; Purwasasmita, B.S.; Suzuki, S.; Kobori, H. The potential using of organic nanoparticles synthesized from Gmelina (Gmelina arborea Roxb.) wood bark as nanofiller of wood adhesive: Physical, chemical and thermal properties. J. Indian Acad. Wood Sci. 2020, 17, 165–175. [Google Scholar] [CrossRef]
- Réh, R.; Krišťák, Ľ.; Sedliačik, J.; Bekhta, P.; Božiková, M.; Kunecová, D.; Vozárová, V.; Tudor, E.M.; Antov, P.; Savov, V. Utilization of birch bark as an eco-friendly filler in urea-formaldehyde adhesives for plywood manufacturing. Polymers 2021, 13, 511. [Google Scholar] [CrossRef]
- Feng, S.; Cheng, S.; Yuan, Z.; Leitch, M.; Xu, C. Valorization of bark for chemicals and materials: A review. Renew. Sustain. Energy Rev. 2013, 26, 560–578. [Google Scholar] [CrossRef]
- Bortenschlager, S.; Oeggl, K. The Iceman and His Natural Environment: Palaeobotanical Results; Springer: Vienna, Austria, 2000. [Google Scholar]
- Pásztory, Z.; Ronyecz Mohácsiné, I.; Börcsök, Z. Investigation of thermal insulation panels made of black locust tree bark. Constr. Build. Mater. 2017, 147, 733–735. [Google Scholar] [CrossRef]
- Pásztory, Z.; Ronyecz, I. The thermal insulation capacity of tree bark. Acta Silv. Lignaria Hung. 2013, 9, 111–117. [Google Scholar] [CrossRef]
- Paulitsch, M.; Barbu, M.C. Holzwerkstoffe der Moderne, 1. Aufl.; DRW-Verlag: Leinfelden-Echterdingen, Germany, 2015. [Google Scholar]
- Busquets-Ferrer, M.; Czabany, I.; Vay, O.; Gindl-Altmutter, W.; Hansmann, C. Alkali-extracted tree bark for efficient bio-based thermal insulation. Constr. Build. Mater. 2021, 271, 121577. [Google Scholar] [CrossRef]
- Blanchet, P.; Cloutier, A.; Riedl, B. Particleboard made from hammer milled black spruce bark residues. Wood Sci. Technol. 2000, 34, 11–19. [Google Scholar] [CrossRef]
- Pedieu, R.; Riedl, B.; Pichette, A. Properties of mixed particleboards based on white birch (Betula papyrifera) inner bark particles and reinforced with wood fibres. Eur. J. Wood Prod. 2009, 67, 95–101. [Google Scholar] [CrossRef]
- Yemele, M.; Koubaa, A.; Diouf, P.N.; Blanchet, P.; Cloutier, A.; Stevanovic, T. Effects of hot-water treatment of black spruce bark and trembling aspenbark rawmaterialon the physical and mechanical properties of bark particleboards. Wood Fiber Sci. 2008, 40, 339–351. [Google Scholar]
- Xing, C.; Zhang, S.Y.; Deng, J.; Wang, S. Investigation of the effects of bark fiber as core material and its resin content on three-layer MDF performance by response surface methodology. Wood Sci. Technol. 2007, 41, 585–595. [Google Scholar] [CrossRef]
- Xing, C.; Deng, J.; Zhang, S.Y. Effect of thermo-mechanical refining on properties of MDF made from black spruce bark. Wood Sci. Technol. 2007, 41, 329–338. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, X.M.; Wan, H.; Brunette, G. Binderless panels made with black spruce bark. Bioresources 2011, 6, 3960–3972. [Google Scholar]
- Kain, G.; Tudor, E.M.; Barbu, M.-C. Bark thermal insulation panels: An explorative study on the effects of bark species. Polymers 2020, 12, 2140. [Google Scholar] [CrossRef]
- Rosell, J.A.; Gleason, S.; Méndez-Alonzo, R.; Chang, Y.; Westoby, M. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol. 2014, 201, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Tudor, E.M.; Scheriau, C.; Barbu, M.C.; Réh, R.; Krišťák, Ľ.; Schnabel, T. Enhanced resistance to fire of the bark-based panels bonded with clay. Appl. Sci. 2020, 10, 5594. [Google Scholar] [CrossRef]
- Kain, G.; Güttler, V.; Barbu, M.-C.; Petutschnigg, A.; Richter, K.; Tondi, G. Density related properties of bark insulation boards bonded with tannin hexamine resin. Eur. J. Wood Prod. 2014, 72, 417–424. [Google Scholar] [CrossRef]
- Kain, G.; Lienbacher, B.; Barbu, M.-C.; Richter, K.; Petutschnigg, A. Larch (Larix decidua) bark insulation board: Interactions of particle orientation, physical–mechanical and thermal properties. Eur. J. Wood Prod. 2018, 76, 489–498. [Google Scholar] [CrossRef]
- Tudor, E.M.; Zwickl, C.; Eichinger, C.; Petutschnigg, A.; Barbu, M.C. Performance of softwood bark comminution technologies for determination of targeted particle size in further upcycling applications. J. Clean. Prod. 2020, 269, 122412. [Google Scholar] [CrossRef]
- Tsalagkas, D.; Börcsök, Z.; Pásztory, Z. Thermal, physical and mechanical properties of surface overlaid bark-based insulation panels. Eur. J. Wood Prod. 2019, 77, 721–730. [Google Scholar] [CrossRef]
- Tudor, E.M.; Dettendorfer, A.; Kain, G.; Barbu, M.C.; Réh, R.; Krišťák, L. Sound-Absorption coefficient of bark-based insulation panels. Polymers 2020, 12, 1012. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; van Renterghem, T.; Kang, J.; Verheyen, K.; Botteldooren, D. Sound absorption by tree bark. Appl. Acoust. 2020, 165, 107328. [Google Scholar] [CrossRef]
- Yemele, M.C.; Blanchet, P.; Cloutier, A.; Koubaa, A. Effect of bark content and particle geometry on the physical and mechanical properties of particleboard made from black spruce and trembling aspen bark. For. Prod. J. 2008, 58, 48–56. [Google Scholar]
- Burrows, C.H. Particleboard from Douglas-fir bark without additives. In Forest Products Research Laboratories, Report, No.15 pp.40 Ref.15.; United States Department of Agriculture: Madison, WI, USA, 1960. [Google Scholar]
- Almusawi, A.; Lachat, R.; Atcholi, K.E.; Gomes, S. Proposal of manufacturing and characterization test of binderless hemp shive composite. Int. Biodeterior. Biodegrad. 2016, 115, 302–307. [Google Scholar] [CrossRef]
- Krilov, A. Debarking of fibrous-barked hardwoods by ultra-high pressure water jets. Wood Sci.Technol. 1983, 17, 145–158. [Google Scholar] [CrossRef]
- EN 12667:2001-Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Products of High and Medium Thermal Resistance; CEN, European Committee for Standardization: Brüssel, Belgium, 2001.
- EN 1607:2013-Plattenebene Thermal Insulating Products for Building Applications—Determination of Tensile Strength Perpendicular to Faces; CEN, European Committee for Standardization: Brüssel, Belgium, 2013.
- EN 317:2005-Particleboards and Fibreboards—Determination of Swelling in Thickness after Immersion in Water; CEN, European Committee for Standardization: Brüssel, Belgium, 2005.
- ISO 12460-5:2015-Wood-Based Panels—Determination of Formaldehyde Release—Part 5: Extraction Method (Called the Perforator Method); CEN, European Committee for Standardization: Brüssel, Belgium, 2015.
- EN 326-1:2005-Wood-Based Panels—Sampling, Cutting and Inspection—Part 1: Sampling and Cutting of Test Pieces and Expression of Test Results; CEN, European Committee for Standardization: Brüssel, Belgium, 2005.
- Tudor, E.M.; Barbu, M.C.; Petutschnigg, A.; Réh, R.; Krišťák, Ľ. Analysis of larch-bark capacity for formaldehyde removal in wood adhesives. Int. J. Environ. Res. Public Health 2020, 17, 764. [Google Scholar] [CrossRef]
- Medved, S.; Gajšek, U.; Tudor, E.M.; Barbu, M.C.; Antonović, A. Efficiency of bark for reduction of formaldehyde emission from particleboards. Wood Res. 2019, 64, 307–316. [Google Scholar]
- Burhenne, L.; Messmer, J.; Aicher, T.; Laborie, M.-P. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 177–184. [Google Scholar] [CrossRef]
- Kemppainen, K.; Siika-aho, M.; Pattathil, S.; Giovando, S.; Kruus, K. Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Ind. Crop. Prod. 2014, 52, 158–168. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Wang, W.; Zhang, W. Reactivity of larch and valonia tannins in synthesis of tannin-formaldehyde resins. Bioresources 2016, 11, 2256–2268. [Google Scholar] [CrossRef]
- Blechschmidt, J. (Ed.) Taschenbuch der Papiertechnik; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2010. [Google Scholar]
- Medved, S.; Lesar, B.; Tudor, E.M.; Humar, M. Thermal insulation panels from cellulosic fibres. For. Prod. J. 2015, 65, 554–558. [Google Scholar]
- Sprengard, C.; Treml, S.; Holm, H.A. Technologien und Techniken zur Verbesserung der Energieeffizienz von Gebäuden durch Wärmedämmstoffe: Metastudie Wärmedämmstoffe—Produkte—Anwendungen—Innovationen. 2013. Available online: http://www.fiw-muenchen.de/media/pdf/metastudie_waermedaemmstoffe.pdf (accessed on 9 January 2020).
Insulation Panel (Target Density) | Density (kg/m3) | Fibre Length (mm) | Boards Number |
---|---|---|---|
A200 | 277 | 1.6 | 3 |
B250 | 245 | 4 | 3 |
B200 | 185 | 4 | 4 |
C200 | 204 | 7 | 3 |
Sample | TS % | WA % | TC 10 °C mW/(m*K) | TC 25 °C mW/(m*K) | TC 40 °C mW/(m*K) | IB N/mm² | Density kg/m3 |
---|---|---|---|---|---|---|---|
A200 | 10.0 b (5.4) | 207 b (108) | 59.9 c (3.4) | 62.2 c (3.3) | 64.5 c (3.1) | 0.129 c (0.035) | 277 d (19) |
B250 | 18.6 d (3.8) | 301 c (32) | 58.9 c (3.9) | 60.8 c (3.7) | 62.4 c (3.5) | 0.069 b (0.011) | 245 c (27) |
B200 | 14.4 c (3.0) | 305 c (57) | 47.5 a (2.8) | 49.3 a (2.7) | 51.1 a (2.6) | 0.034 b (0.006) | 185 a (21) |
C200 | 8.0 a (3.8) | 172 a (45) | 50.6 b (0.9) | 53.4 b (1.4) | 56.1 b (1.9) | 0.009 a (0.013) | 204 b (4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gößwald, J.; Barbu, M.-C.; Petutschnigg, A.; Tudor, E.M. Binderless Thermal Insulation Panels Made of Spruce Bark Fibres. Polymers 2021, 13, 1799. https://doi.org/10.3390/polym13111799
Gößwald J, Barbu M-C, Petutschnigg A, Tudor EM. Binderless Thermal Insulation Panels Made of Spruce Bark Fibres. Polymers. 2021; 13(11):1799. https://doi.org/10.3390/polym13111799
Chicago/Turabian StyleGößwald, Jakob, Marius-Cătălin Barbu, Alexander Petutschnigg, and Eugenia Mariana Tudor. 2021. "Binderless Thermal Insulation Panels Made of Spruce Bark Fibres" Polymers 13, no. 11: 1799. https://doi.org/10.3390/polym13111799
APA StyleGößwald, J., Barbu, M.-C., Petutschnigg, A., & Tudor, E. M. (2021). Binderless Thermal Insulation Panels Made of Spruce Bark Fibres. Polymers, 13(11), 1799. https://doi.org/10.3390/polym13111799