Effect of the Incorporation of Polycaprolactone (PCL) on the Retrogradation of Binary Blends with Cassava Thermoplastic Starch (TPS)
Abstract
1. Introduction
2. Materials
3. Experimental Procedure
3.1. Obtaining the TPS
3.2. Preparation of the Binary Blends TPS/PCL
3.3. FTIR Spectroscopy
3.4. Moisture Adsorption
3.5. Scanning Electron Microscopy (SEM)
3.6. Thermogravimetric Analysis (TGA)
3.7. X-ray Diffraction (XRD)
3.8. Tension Test
4. Results and Discussion
4.1. FTIR Spectroscopy
4.2. Scanning Electron Microscopy (SEM)
4.3. Moisture Adsorption
4.4. Thermogravimetric Analysis (TGA)
4.5. X-ray Diffraction (XRD)
4.6. Tensile Strength
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, M.; Yu, J.; Ma, X. Ethanolamine as a novel plasticizer for thermoplastic starch. Polym. Degrad. Stab. 2005, 90, 501–507. [Google Scholar] [CrossRef]
- Guan, J.; Eskridge, K.; Hanna, M. Acetylated starch-polylactic acid loose-fill packaging materials. Ind. Crop. Prod. 2005, 22, 109–123. [Google Scholar] [CrossRef]
- Correa, A.C.; Carmona, V.B.; Simão, J.A.; Capparelli, L.H.; Marconcini, J.M. Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): Morphological, rheological, thermal and mechanical properties. Carbohydr. Polym. 2017, 167, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Toro, R.; Contreras, J.; Talens, P.; Chiralt, A. Physical and structural properties and thermal behaviour of starch-poly(e-caprolactone) blend films for food packaging. Food Packag. Shelf Life 2015, 5, 10–20. [Google Scholar] [CrossRef]
- Ortega-Toro, R.; Santagata, G.; Gomez, G.; Cerruti, P.; Talens, P.; Chiralt, A.; Malinconico, M. Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone). Carbohydr. Polym. 2016, 147, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.M.; Don, T.M.; Huang, Y.C. Preparation and Properties of Biodegradable Thermoplastic Starch/Poly (hydroxyl butyrate) Blends. J. Appl. Polym. Sci. 2006, 100, 2371–2379. [Google Scholar] [CrossRef]
- Tappibana, P.; Smith, D.; Triwitayakornb, K.; Bao, J. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends Food Sci. Technol. 2019, 83, 167–180. [Google Scholar] [CrossRef]
- Mina, J.; Valadez, A.; Herrera-Franco, P.; Toledano, T. Influencia del tiempo de almacenamiento en las propiedades estructurales de un almidón termoplástico de yuca (TPS). Ing. Y Compet. 2009, 11, 95–106. [Google Scholar]
- Mali, L.; Sakanaka, F.; Yamashita, M. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 2005, 60, 283–289. [Google Scholar] [CrossRef]
- Fekete, E.; Bella, É.; Csiszár, E.; Móczó, J. Improving physical properties and retrogradation of thermoplastic starch by incorporating agar. Int. J. Biol. Macromol. 2019, 136, 1026–1033. [Google Scholar] [CrossRef]
- Nguyen, H.; Lumdubwong, N. Fabrication of starch blend films with different matrices and their mechanical properties. Polym. Test. 2020, 90, 106694. [Google Scholar] [CrossRef]
- Thire, R.; Simao, R.; Andrade, C. Investigation of the Surface Morphology of Plasticized Corn starch Films. Acta Microsc. 2003, 12, 175–179. [Google Scholar]
- Gudmundsson, M. Retrogradation of starch and the role of its components. Thermochim. Acta 1994, 246, 329–341. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J. The plasticizer containing amide groups for thermoplastic starch. Carbohydr. Polym. 2004, 57, 197–203. [Google Scholar] [CrossRef]
- Ma, X.; Yu, G.; Wan, J. Urea and ethanolamine as a mixed plasticizer for thermoplastic starch. Carbohydr. Polym. 2006, 64, 267–273. [Google Scholar] [CrossRef]
- Curvelo, A.; Carvalho, A.; Agnelli, J. Thermoplastic starch-cellulosic fibers composites: Preliminary results. Carbohydr. Polym. 2001, 45, 183–188. [Google Scholar] [CrossRef]
- Zhanga, C.-W.; Nair, S.; Chen, H.; Yan, N.; Farnood, R.; Li, F.-Y. Thermally stable, enhanced water barrier, high strength starch biocomposite reinforced with lignin containing cellulose nanofibrils. Carbohydr. Polym. 2020, 230, 115626. [Google Scholar] [CrossRef]
- Garalde, R.A.; Thipmanee, R.; Jariyasakoolroj, P. The effects of blend ratio and storage time on thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Heliyon 2019, 5, e01251. [Google Scholar] [CrossRef]
- Rosa, R.; Ferreira, F.; Saravia, A.; Rocco, S.; Sforca, M.; Gouveia, R.; Lona, L. A Combined Computational and Experimental Study on the Polymerization of ε-Caprolactone. Ind. Eng. Chem. Res. 2018, 57, 13387–13395. [Google Scholar] [CrossRef]
- Wang, Y.; Onozawa, S.Y.; Kunioka, M. Ring-opening polymerization of ε-caprolactone with yttrium triflate. Green Chem. 2003, 5, 571–574. [Google Scholar] [CrossRef]
- Wang, X.L.; Yang, K.K.; Wang, Y.Z. Studies on Biodegradable Poly(Hexano-6-Lactone) Fibers. Part 3. Enzymatic Degradation in Vitro. IupacPure Appl. Chem. 2002, 74, 869–880. [Google Scholar]
- Wang, X.L.; Yang, K.K.; Wang, Y.Z. Properties of Starch Blends with Biodegradable Polymers. J. Macromol. Sci. Part. C 2003, 43, 385–409. [Google Scholar] [CrossRef]
- Averous, L.; Moro, L.; Dole, P.; Fringant, C. Properties of thermoplastic blend: Starch-polycaprolactone. Polymer 2000, 41, 4157–4167. [Google Scholar] [CrossRef]
- Derval, R.; Guedes, C.; Pedroso, A. Gelatinized and Nongelatinized Corn Starch/Poly(ε-Caprolactone) Blends: Characterization by Rheological, Mechanical and Morphological Properties. Polímeros: Cienc. Y Tecnol. 2004, 14, 181–186. [Google Scholar]
- Matzinos, P.; Tserki, V.; Kontoyiannis, A.; Panayiotou, C. Processing and characterization of starch/polycaprolactone products. Polym. Degrad. Stab. 2002, 77, 17–24. [Google Scholar] [CrossRef]
- Shin, B.Y.; Lee, S.I.; Sub Shin, Y.; Balakrishnan, S.; Narayan, R. Rheological, Mechanical and Biodegradation Studies on Blends of Thermoplastic Starch and Polycaprolactone. Polym. Eng. Sci. 2004, 44, 1429–1438. [Google Scholar] [CrossRef]
- Sarazin, P.; Li, G.; Orts, W.; Favis, B. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 2008, 49, 599–609. [Google Scholar] [CrossRef]
- Mano, J.; Koniarova, D.; Reis, R. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J. Mater. Sci. Mater. Med. 2003, 14, 127–135. [Google Scholar] [CrossRef]
- ASTM. ASTM D638-14. In Standard Test. Method for Tensile Properties of Plastics; ASTM: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM. ASTM E104-02. In Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions; ASTM: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Nara, S.; Komiya, T. Studies on the Relationship Between Water-satured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch Stärke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- Balmayor, E.; Tuzlakoglu, K.; Azevedo, H.; Reis, R. Preparation and characterization of starch-poly-ε-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Biomaterialia 2009, 5, 1035–1045. [Google Scholar] [CrossRef][Green Version]
- Cesteros, L. Aplicaciones de la FTIR al estudio de las interacciones polímero-polímero. Rev. Iberoam. Polímeros 2004, 5, 111–132. [Google Scholar]
- Cuenca, P.; Ferrero, S.; Albani, O. Preparation and characterization of cassava starch acetate with high substitution degree. Food Hydrocolloid 2020, 100, 105430. [Google Scholar] [CrossRef]
- Rodrigues dos Santos, T.; Franco, C.; Demiate, I.; Li, X.H.; Garcia, E.; Jane, J.L.; Leonel, M. Spray-drying and extrusion processes: Effects on morphology and physicochemical characteristics of starches isolated from Peruvian carrot and cassava. Int. J. Biol. Macromol. 2018, 118, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Wurzburg, O. Modified Starches: Properties and Uses; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Tsuji, H.; Horikawa, G.; Itsuno, S. Melt-processed biodegradable polyester blends on poly(L-lactic acid) and poly(ε-caprolactone): Effects of processing conditions on biodegradation. J. Appl. Polym. Sci. 2007, 104, 831–841. [Google Scholar] [CrossRef]
- Ishiaku, U.S.; Pang, K.W.; Lee, W.S.; Mohd, Z.A. Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly(ε-caprolactone). Eur. Polym. J. 2002, 38, 393–401. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Kennedy, J. Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr. Polym. 2005, 62, 19–24. [Google Scholar] [CrossRef]
- Huang, M.; Yu, J. Structure and Properties of Thermoplastic Corn Starch/Montmorillonite Biodegradable Composites. J. Appl. Polym. Sci. 2006, 99, 170–176. [Google Scholar] [CrossRef]
- Liu, Z.; Yi, X.; Feng, Y. Effects of glycerin and glycerol monostearate on performance of thermoplastic starch. J. Mater. Sci. 2001, 36, 1809–1815. [Google Scholar] [CrossRef]
- Thunwall, M.; Kuthanová, V.; Boldizar, A.; Rigdahl, M. Film blowing of thermoplastic starch. Carbohydr. Polym. 2008, 71, 583–590. [Google Scholar] [CrossRef]
- Ma, X.; Yu, G.; Wan, N. Fly ash-reinforced thermoplastic starch composites. Carbohydr. Polym. 2007, 67, 32–39. [Google Scholar] [CrossRef]
- Teixeira, E.; Pasquini, D.; Curvelo, A.; Corradini, E. Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr. Polym. 2009, 78, 422–431. [Google Scholar] [CrossRef]
- Da Róz, A.; Zambon, M.; Curvelo, A.; Carvalho, A. Thermoplastic starch modified during melt processing with organic acids: The effect of molar mass on thermal and mechanical properties. Ind. Crop. Prod. 2011, 33, 152–157. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Wang, X.; Cen, R.; Wang, Y. Effect of carbonyl content on the properties of thermoplastic oxidized starch. Carbohydr. Polym. 2009, 78, 157–161. [Google Scholar] [CrossRef]
- Mina, J.; Valadez-González, A.; Herrera-Franco, P.; Zuluaga, F.; Delvasto, S. Physicochemical Characterization of Natural and Acetylated Thermoplastic Cassava Starch. Dyna 2011, 78, 185–193. [Google Scholar]
- Aoyagi, Y.; Yamashita, K.; Doi, Y. Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym. Degrad. Stab. 2002, 76, 53–59. [Google Scholar] [CrossRef]
- Valles, A.; Martinez, A.; Ribes, A.; Cadenato, A.; Ramis, X.; Salla, J.M.; Morancho, J.M. Thermal Analysis Characterization of the Degradation of Biodegradable Starch Blends in Soil. J. Appl. Polym. Sci. 2005, 96, 358–371. [Google Scholar]
- Arberlaiz, A.; Fernández, B.; Valea, A.; Mondragon, I. Mechanical properties of short flax fibre bundle/poly(3-caprolactone) composites: Influence of matrix modification and fibre content. Carbohydr. Polym. 2006, 64, 224–232. [Google Scholar] [CrossRef]
- Sandoval, A.; Rodríguez, E.; Fernández, A. Aplicación del análisis por calorimetría diferencial de barrido (DSC) para la caracterización de las modificaciones del almidón. Dyna 2005, 72, 45–53. [Google Scholar]
- Van Soest, J.; Hulleman, S.; De Wit, D.; Vliegenthart, J. Crystallinity in starch bioplastics. Ind. Crop. Prod. 1996, 5, 11–22. [Google Scholar] [CrossRef]
- Atichokudomchai, N.; Shobsngob, S.; Chinachoti, P.; Varavinit, S. A Study of Some Physicochemical Properties of High-Crystalline Tapioca Starch. Starch Stärke 2001, 53, 577–581. [Google Scholar] [CrossRef]
- Wang, X.; Gao, W.Y.; Zhang, L.; Xiao, P.; Yao, L.; Liu, Y.; Li, K. Study on the morphology, crystalline structure and thermal properties of yam starch acetates with different degrees of substitution. Sci. China Ser. B Chem. 2008, 51, 859–865. [Google Scholar] [CrossRef]
- Choi, E.; Kim, C.; Park, J. Structure–Property Relationship in PCL/Starch Blend Compatibilized with Starch-g-PCL Copolymer. J. Polym. Sci. Part. B Polym. Phys. 1999, 37, 2430–2438. [Google Scholar] [CrossRef]
- Rosa, D.S.; Lopes, D.R.; Calil, M.R. Thermal properties and enzymatic degradation of blends of poly(3-caprolactone) with starches. Polym. Test. 2005, 24, 756–761. [Google Scholar] [CrossRef]
- Van Soest, J.; Knooren, N. Influences of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. Carbohydr. Polym. 1996, 29, 1411–1422. [Google Scholar] [CrossRef]
- Van Soest, J.; Hulleman, S.; De Wit, D.; Vliegenthart, J. Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity. Carbohydr. Polym. 1996, 29, 225–232. [Google Scholar] [CrossRef]
- Shogren, R. Effect of moisture content on the melting and subsequent physical aging of corn starch. Carbohydr. Polym. 1992, 19, 83–90. [Google Scholar] [CrossRef]
- Lourdin, D.; Bizot, H.; Colonna, P. Antiplasticization in Starch–Glycerol Films? J. Appl. Polym. Sci. 1997, 63, 1047–1053. [Google Scholar] [CrossRef]
- Ruiz, G. Obtención y caracterización de un polímero biodegradable a partir del almidón de yuca. Ing. Y Cienc. 2007, 2, 5–28. [Google Scholar]
- Yu, J.; Wang, N.; Ma, X. The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol. Starch Stärke 2005, 57, 494–504. [Google Scholar]
Functional Group/Assignment | Group Frequency, Wavenumber (cm−1) | |
---|---|---|
Experimental Dates | Balmayor et al. [32] | |
Hydroxyl O–H stretch of the starch | 3331 | 3362 |
Methylene CH2 asymmetric/symmetric stretch of the polycaprolactone | 2945/2866 | 2944/2864 |
Carbonyl C=O stretch of the polycaprolactone (ester) | 1724 | 1724 |
C–O single bond C–O–C stretch of the polycaprolactone | 1242 | 1244 |
Glycosidic C–O–C stretch of the starch | 1043/1029 | 1048/1021 |
Materials Starch/Plasticizer | * Plastizicer Content (%) | Conditions for the Adsorption Determination | Moisture Adsorption (%) | Reference | ||
---|---|---|---|---|---|---|
Drying Temperature (°C) | Drying Time (hours) | Relative Humidity | ||||
Corn/Glycerol | 23 | 105 | 12 | 43 | 9.0 | Curvelo et al. [16] |
100 | 65.0 | |||||
Corn/Glycerol | 23 | 105 | 12 | 75 | 37.0 | Ma et al. [39] |
Corn/Urea-ethanolamine | 23 | 105 | 24 | 25 | 16.0 | Huang and Yu [40] |
50 | 23.0 | |||||
Wheat/Glycerol | 30 | N.R. | N.R. | 90 | 35.0 | Liu et al. [41] |
Potato/Glycerol | 23 | 105 | N.R. | 53 | 13.0 | Thunwall et al. [42] |
Corn/Glycerol | 23 | 105 | 12 | 100 | 46.0 | Ma et al. [43] |
Cassava/Glycerol | 38 | N.R. | N.R. | 53 | 11.2 | Teixeira et al. [44] |
Corn/Glycerol | 23 | 110 | 12 | 53 | 11.6 | Da Róz et al. [45] |
97 | 60.0 | |||||
Corn/Glycerol | ** 15 | 110 | 36 | 100 | 30.7 | Zhang et al. [46] |
Cassava/Glycerol | 30 | 80 | 12 | 54 | 10.5 | Mina et al. [47] |
Cassava/Glycerol | 30 | 60 | 24 | 54 | 7.0 | Present work |
Cassava/Glycerol | 30 | 60 | 24 | 29 | 1.0 | Present work |
Material | Angle (°, 2θ) | Intensity | Type | |
---|---|---|---|---|
Experimental Dates | Reference | |||
Native starch | 15.1 | N.R. [52] | Very strong | C |
17.2 | 17.6 [52] | Strong | ||
18.0 | N.R. [52] | Strong | ||
22.9 | 22.6 [52] | Strong | ||
30.2 | 30.2 [52] | Weak | ||
33.5 | 33.5 [52] | Weak | ||
Thermoplastic starch (TPS) | 13.0 | 13.0 [52] | Medium | VH with Residual crystallinity C |
17.7 | N.R. [52] | Weak | ||
19.8 | 19.8 [52] | Very strong | ||
22.7 | N.R. [52] | Weak | ||
Polycaprolactone (PCL) | 21.4 | 21.6 [5] | Very strong | Planes (110) |
22.0 | 22.2 [5] | Weak | Planes (111) | |
23.6 | 23.3 [5] | Strong | Planes (200) |
Material Starch/Plasticizer | Relative Humidity (%) | Crosshead Rate (mm/min) | Tensile Strength (MPa) | Modulus of Elasticity (MPa) | Tensile Strain (%) | Reference |
---|---|---|---|---|---|---|
Corn/23% Glycerol | 50 (14 days) | 10.0 | 5.5 | 38.1 | 7.0 | Huang et al. [1] |
Corn/23% Glycerol | 60 (14 days) | 50.0 | 5.0 | 125.0 | N.R. | Curvelo et al. [16] |
Potato/23% Glycerol | 70 (14 days) | 10.0 | 5.4 | 38.0 | 27.0 | Van Soest et al. [58] |
Corn/Water | 17 (7 days) | 50.0 | 16.7 | 830.0 | 3.3 | Shogren [59] |
Potato/29% Glycerol | 57 (2 days) | 2.0 | 5.0 | N.R. | 4.0 | Lourdin et al. [60] |
Corn/23% Urea-Ethanolamine | 50 (14 days) | 10.0 | 6.4 | 124.7 | 116.7 | Huang y Yu [40] |
Starch/30% Glycerol | N.R. | N.R. | 0.4 | N.R. | 68.9 | Ruiz [61] |
Corn/23% Urea | 33 (7 days) | 10.0 | 12.6 | 1664.0 | 5.7 | Ma et al. [15] |
Corn/23% Ethanolamine | 33 (7 days) | 10.0 | 3.1 | 57.0 | 61.6 | |
Corn/23% Urea-Ethanolamine | 33 (7 days) | 10.0 | 9.0 | 236.0 | 34.4 | |
Corn/20% Glycerol | 50 (7 days) | 10 | 4.8 | N.R. | 85.0 | Yu et al. [62] |
Corn/ * 15% Glycerol | 100 (N.R.) | 10 | 2.1 | N.R. | 16.2 | Zhang et al. [46] |
Corn/23% Glycerol | N.R. (7 days) | 10 | 4.5 | 80.0 | N.R. | Ma et al. [43] |
Starch/38% Glycerol | 53 (10 days) | 50 | 1.8 | 16.8 | 29.8 | Teixeira et al. [44] |
Materials | Tensile Strength (MPa) | Modulus of Elasticity (MPa) |
---|---|---|
Polycaprolactone (PCL) | 23.9 | 383.0 |
Binary blend TPS/PCL (40/60) | 7.6 ± 1.0 | 235.3 ± 23.8 |
Binary blend TPS/PCL (50/50) | 6.9 ± 0.1 | 187.0 ± 3.6 |
Binary blend TPS/PCL (60/40) | 5.5 ± 0.4 | 138.0 ± 8.5 |
Thermoplastic starch (TPS) | 2.3 ± 0.3 | 53.5 ± 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mina Hernandez, J.H. Effect of the Incorporation of Polycaprolactone (PCL) on the Retrogradation of Binary Blends with Cassava Thermoplastic Starch (TPS). Polymers 2021, 13, 38. https://doi.org/10.3390/polym13010038
Mina Hernandez JH. Effect of the Incorporation of Polycaprolactone (PCL) on the Retrogradation of Binary Blends with Cassava Thermoplastic Starch (TPS). Polymers. 2021; 13(1):38. https://doi.org/10.3390/polym13010038
Chicago/Turabian StyleMina Hernandez, José Herminsul. 2021. "Effect of the Incorporation of Polycaprolactone (PCL) on the Retrogradation of Binary Blends with Cassava Thermoplastic Starch (TPS)" Polymers 13, no. 1: 38. https://doi.org/10.3390/polym13010038
APA StyleMina Hernandez, J. H. (2021). Effect of the Incorporation of Polycaprolactone (PCL) on the Retrogradation of Binary Blends with Cassava Thermoplastic Starch (TPS). Polymers, 13(1), 38. https://doi.org/10.3390/polym13010038