Dynamic Stability Analysis in Hybrid Nanocomposite Polymer Beams Reinforced by Carbon Fibers and Carbon Nanotubes
Abstract
:1. Introduction
2. Problem Definition
2.1. Modeling CNT/Fiber/Polymer Multiphase Nanocomposite
2.2. Motion Equations
- ▪
- Clamped–Clamped
- ▪
- Clamped–Simply
- ▪
- Simply–Simply
3. Solving Procedure
4. Numerical Consequences
4.1. Validation
4.2. Parametric Study
5. Conclusions
- Increments of weight-percentage of CNTs can lead to shift of DIR to the right;
- Presence of CFs as well as CNTs play paramount role in dynamic behavior of hybrid polymer structure and raise the excitation frequency;
- Considering CC boundary edge causes increase in excitation frequency of structure compared to CS and SS boundary edges;
- The obtained results accentuate the geometric parameters and their influence on the dynamic behavior of structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Fischer, H. Polymer nanocomposites: From fundamental research to specific applications. Mater. Sci. Eng. C 2003, 23, 763–772. [Google Scholar] [CrossRef]
- Godovsky, D.Y. Device applications of polymer-nanocomposites. In Biopolymers Pva Hydrogels, Anionic Polymerisation Nanocomposites; Springer: Cham, Switerland, 2000; pp. 163–205. [Google Scholar]
- Tanaka, T.; Montanari, G.; Mulhaupt, R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 763–784. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, M.; Gao, L.; Chu, S. A combined projection-outline-based active learning kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities. Comput. Methods Appl. Mech. Eng. 2019, 344, 13–33. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, M.; Gao, L.; Fu, J. A novel projection outline based active learning method and its combination with kriging metamodel for hybrid reliability analysis with random and interval variables. Comput. Methods Appl. Mech. Eng. 2018, 341, 32–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, L.; Xiao, M. Maximizing natural frequencies of inhomogeneous cellular structures by kriging-assisted multiscale topology optimization. Comput. Struct. 2020, 230, 106197. [Google Scholar] [CrossRef]
- Zhu, S.-P.; Keshtegar, B.; Chakraborty, S.; Trung, N.-T. Novel probabilistic model for searching most probable point in structural reliability analysis. Comput. Methods Appl. Mech. Eng. 2020, 366, 113027. [Google Scholar] [CrossRef]
- Keshtegar, B. Chaotic conjugate stability transformation method for structural reliability analysis. Comput. Methods Appl. Mech. Eng. 2016, 310, 866–885. [Google Scholar] [CrossRef]
- Keshtegar, B. Enriched FR conjugate search directions for robust and efficient structural reliability analysis. Eng. Comput. 2018, 34, 117–128. [Google Scholar] [CrossRef]
- Pastoriza-Santos, I.; Kinnear, C.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L.M. Plasmonic polymer nanocomposites. Nat. Rev. Mater. 2018, 3, 375–391. [Google Scholar] [CrossRef]
- de Leon, A.C.; Chen, Q.; Palaganas, N.B.; Palaganas, J.O.; Manapat, J.; Advincula, R.C. High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 2016, 103, 141–155. [Google Scholar] [CrossRef]
- Liu, F.; Li, Q.; Cui, J.; Li, Z.; Yang, G.; Liu, Y.; Dong, L.; Xiong, C.; Wang, H.; Wang, Q. High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 2017, 27, 1606292. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, M.; Gao, L.; Chu, S. Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine. Comput. Aided Civ. Infrastruct. Eng. 2019, 34, 991–1009. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, J.; Gao, L.; Lee, S.; Eshghi, A.T. An efficient kriging-based subset simulation method for hybrid reliability analysis under random and interval variables with small failure probability. Struct. Multidiscip. Optim. 2019, 59, 2077–2092. [Google Scholar] [CrossRef]
- Keshtegar, B.; Zhu, S.-P. Three-term conjugate approach for structural reliability analysis. Appl. Math. Model. 2019, 76, 428–442. [Google Scholar] [CrossRef]
- Keshtegar, B.; Meng, D.; Ben Seghier, M.E.A.; Xiao, M.; Trung, N.-T.; Bui, D.T. A hybrid sufficient performance measure approach to improve robustness and efficiency of reliability-based design optimization. Eng. Comput. 2020. [Google Scholar] [CrossRef]
- Gao, L.; Xiao, M.; Shao, X.; Jiang, P.; Nie, L.; Qiu, H. Analysis of gene expression programming for approximation in engineering design. Struct. Multidiscip. Optim. 2012, 46, 399–413. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, J.; Gao, L. A system active learning kriging method for system reliability-based design optimization with a multiple response model. Reliab. Eng. Syst. Saf. 2020, 199, 106935. [Google Scholar] [CrossRef]
- Xia, D.; Lo, I.M. Synthesis of magnetically separable bi2o4/fe3o4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Res. 2016, 100, 393–404. [Google Scholar] [CrossRef]
- Filippov, A.; Afonin, D.; Kononenko, N.; Lvov, Y.; Vinokurov, V. New approach to characterization of hybrid nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2017, 521, 251–259. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Dabbagh, A. Vibration analysis of multi-scale hybrid nanocomposite plates based on a halpin-tsai homogenization model. Compos. Part B Eng. 2019, 173, 106955. [Google Scholar] [CrossRef]
- Dabbagh, A.; Rastgoo, A.; Ebrahimi, F. Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory. Mech. Based Des. Struct. Mach. 2020, 1–27. [Google Scholar] [CrossRef]
- Salehi, H.; Salehi, M. Experimental study on the mechanical, creep, and viscoelastic behavior of tio 2/glass/epoxy hybrid nanocomposites. Mech. Compos. Mater. 2016, 52, 623–636. [Google Scholar] [CrossRef]
- Koratkar, N.A.; Wei, B.; Ajayan, P.M. Multifunctional structural reinforcement featuring carbon nanotube films. Compos. Sci. Technol. 2003, 63, 1525–1531. [Google Scholar] [CrossRef]
- Koratkar, N.; Wei, B.; Ajayan, P.M. Carbon nanotube films for damping applications. Adv. Mater. 2002, 14, 997–1000. [Google Scholar] [CrossRef]
- Zhou, X.; Shin, E.; Wang, K.; Bakis, C.E. Interfacial damping characteristics of carbon nanotube-based composites. Compos. Sci. Technol. 2004, 64, 2425–2437. [Google Scholar] [CrossRef]
- Rajoria, H.; Jalili, N. Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos. Sci. Technol. 2005, 65, 2079–2093. [Google Scholar] [CrossRef]
- Vinson, J.R. The Behavior of Sandwich Structures of Isotropic and Composite Materials; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Herrmann, A.S.; Zahlen, P.C.; Zuardy, I. Sandwich structures technology in commercial aviation. In Sandwich Structures 7: Advancing with Sandwich Structures and Materials; Springer: Cham, Switerland, 2005; pp. 13–26. [Google Scholar]
- Gul, U.; Aydogdu, M. Wave propagation in double walled carbon nanotubes by using doublet mechanics theory. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 93, 345–357. [Google Scholar] [CrossRef]
- Avramov, K. Nonlinear vibrations characteristics of single-walled carbon nanotubes by nonlocal elastic shell model. Int. J. Non-Linear Mech. 2018, 107, 149–160. [Google Scholar] [CrossRef]
- Bian, L.; Wang, Y. Temperature-related study on buckling properties of double-walled carbon nanotubes. Eur. J. Mech. A/Solids 2020, 80, 103875. [Google Scholar] [CrossRef]
- Mehar, K.; Panda, S.K.; Bui, T.Q.; Mahapatra, T.R. Nonlinear thermoelastic frequency analysis of functionally graded cnt-reinforced single/doubly curved shallow shell panels by fem. J. Therm. Stresses 2017, 40, 899–916. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Z.; Liew, K. Nonlinear bending analysis of fg-cnt reinforced composite thick plates resting on pasternak foundations using the element-free imls-ritz method. Compos. Struct. 2015, 128, 165–175. [Google Scholar] [CrossRef]
- Jiao, P.; Chen, Z.; Li, Y.; Ma, H.; Wu, J. Dynamic buckling analyses of functionally graded carbon nanotubes reinforced composite (fg-cntrc) cylindrical shell under axial power-law time-varying displacement load. Compos. Struct. 2019, 220, 784–797. [Google Scholar] [CrossRef]
- Mirzaei, M.; Kiani, Y. Thermal buckling of temperature dependent fg-cnt reinforced composite plates. Meccanica 2016, 51, 2185–2201. [Google Scholar] [CrossRef]
- Janghorban, M.; Nami, M.R. Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second-order shear deformation theory. Mech. Adv. Mater. Struct. 2017, 24, 458–468. [Google Scholar] [CrossRef]
- Kolahchi, R.; Zarei, M.S.; Hajmohammad, M.H.; Oskouei, A.N. Visco-nonlocal-refined zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-bolotin methods. Thin-Walled Struct. 2017, 113, 162–169. [Google Scholar] [CrossRef]
- Mikhasev, G.I.; Eremeyev, V.A.; Wilde, K.; Maevskaya, S.S. Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core. J. Intell. Mater. Syst. Struct. 2019, 30, 2748–2769. [Google Scholar] [CrossRef]
- Hajmohammad, M.H.; Kolahchi, R.; Zarei, M.S.; Nouri, A.H. Dynamic response of auxetic honeycomb plates integrated with agglomerated cnt-reinforced face sheets subjected to blast load based on visco-sinusoidal theory. Int. J. Mech. Sci. 2019, 153, 391–401. [Google Scholar] [CrossRef]
- Malikan, M.; Eremeyev, V.A. On the dynamics of a visco–piezo–flexoelectric nanobeam. Symmetry 2020, 12, 643. [Google Scholar] [CrossRef] [Green Version]
- Malikan, M.; Krasheninnikov, M.; Eremeyev, V.A. Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. Int. J. Eng. Sci. 2020, 148, 103210. [Google Scholar] [CrossRef]
- Keshtegar, B.; Farrokhian, A.; Kolahchi, R.; Trung, N.-T. Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels. Eur. J. Mech. A/Solids 2020, 82, 104010. [Google Scholar] [CrossRef]
- Şimşek, M.; Reddy, J. A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos. Struct. 2013, 101, 47–58. [Google Scholar] [CrossRef]
- Thostenson, E.; Li, W.; Wang, D.; Ren, Z.; Chou, T. Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 2002, 91, 6034–6037. [Google Scholar] [CrossRef]
- Shen, H.-S. A comparison of buckling and postbuckling behavior of fgm plates with piezoelectric fiber reinforced composite actuators. Compos. Struct. 2009, 91, 375–384. [Google Scholar] [CrossRef]
- Kim, M.; Park, Y.-B.; Okoli, O.I.; Zhang, C. Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos. Sci. Technol. 2009, 69, 335–342. [Google Scholar] [CrossRef]
- Clyne, T.; Hull, D. An Introduction to Composite Materials; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Fakhar, A.; Kolahchi, R. Dynamic buckling of magnetorheological fluid integrated by visco-piezo-gpl reinforced plates. Int. J. Mech. Sci. 2018, 144, 788–799. [Google Scholar] [CrossRef]
- Motezaker, M.; Jamali, M.; Kolahchi, R. Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory. J. Comput. Appl. Math. 2020, 369, 112625. [Google Scholar] [CrossRef]
- Kolahchi, R.; Zhu, S.-P.; Keshtegar, B.; Trung, N.-T. Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial. Aerosp. Sci. Technol. 2020, 98, 105656. [Google Scholar] [CrossRef]
- Joubaneh, E.F.; Barry, O.R.; Tanbour, H.E. Analytical and experimental vibration of sandwich beams having various boundary conditions. Shock Vib. 2018, 2018, 3682370. [Google Scholar] [CrossRef]
- Hajmohammad, M.H.; Farrokhian, A.; Kolahchi, R. Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory. Aerosp. Sci. Technol. 2018, 78, 260–270. [Google Scholar] [CrossRef]
- Asadi, H.; Wang, Q. An investigation on the aeroelastic flutter characteristics of fg-cntrc beams in the supersonic flow. Compos. Part B Eng. 2017, 116, 486–499. [Google Scholar] [CrossRef]
- Yas, M.; Samadi, N. Free vibrations and buckling analysis of carbon nanotube-reinforced composite timoshenko beams on elastic foundation. Int. J. Press. Vessel. Pip. 2012, 98, 119–128. [Google Scholar] [CrossRef]
- Wattanasakulpong, N.; Ungbhakorn, V. Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput. Mater. Sci. 2013, 71, 201–208. [Google Scholar] [CrossRef]
Mode | DQ Method [54] | Experiment [53] | Present Work |
---|---|---|---|
1 | 118.00 | 111.19 | 112.12 |
2 | 381.00 | 364.60 | 366.23 |
3 | 719.84 | 680.80 | 687.33 |
4 | 1141.94 | 1063.50 | 1074.98 |
5 | 1676.51 | 1652.07 | 1666.44 |
BC | Asadi and Wang [55] | Yas and Samadi [56] | Present Work |
---|---|---|---|
SS | 0.09831 | 0.09859 | 0.09844 |
CS | 0.14878 | 0.14948 | 0.14852 |
CC | 0.21264 | 0.21395 | 0.21272 |
Theory | Wattanasakulpong and Ungbhakorn [57] | Present Work |
---|---|---|
FSDT | 0.9976 | 0.9974 |
TSDT | 0.9745 | 0.9749 |
ESDT | 0.9756 | 0.9759 |
HSDT | 0.9745 | 0.9744 |
TrSDT | 0.9749 | 0.9741 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keshtegar, B.; Kolahchi, R.; Eyvazian, A.; Trung, N.-T. Dynamic Stability Analysis in Hybrid Nanocomposite Polymer Beams Reinforced by Carbon Fibers and Carbon Nanotubes. Polymers 2021, 13, 106. https://doi.org/10.3390/polym13010106
Keshtegar B, Kolahchi R, Eyvazian A, Trung N-T. Dynamic Stability Analysis in Hybrid Nanocomposite Polymer Beams Reinforced by Carbon Fibers and Carbon Nanotubes. Polymers. 2021; 13(1):106. https://doi.org/10.3390/polym13010106
Chicago/Turabian StyleKeshtegar, Behrooz, Reza Kolahchi, Arameh Eyvazian, and Nguyen-Thoi Trung. 2021. "Dynamic Stability Analysis in Hybrid Nanocomposite Polymer Beams Reinforced by Carbon Fibers and Carbon Nanotubes" Polymers 13, no. 1: 106. https://doi.org/10.3390/polym13010106
APA StyleKeshtegar, B., Kolahchi, R., Eyvazian, A., & Trung, N.-T. (2021). Dynamic Stability Analysis in Hybrid Nanocomposite Polymer Beams Reinforced by Carbon Fibers and Carbon Nanotubes. Polymers, 13(1), 106. https://doi.org/10.3390/polym13010106