Optimization of the Rubber Formulation for Footwear Applications from the Response Surface Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Testing Methods
3. Results and Discussion
3.1. Statistical Analysis
3.2. Property Correlations
3.3. Impact Force Reduction
3.4. Optimal Formulation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mercer, J.A.; Horsch, S. Heel-toe running: A new look at the influence of foot strike pattern on impact force. J. Exerc. Sci. Fit. 2015, 13, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.M.; Rodrigues, J.L.; Pinto, V.V.; Ferreira, M.J.; Russo, R.; Pereira, C.M. Evaluation of shock absorption properties of rubber materials regarding footwear applications. Polym. Test. 2009, 28, 642–647. [Google Scholar] [CrossRef]
- Price, C.; Cooper, G.; Graham-Smith, P.; Jones, R. A mechanical protocol to replicate impact in walking footwear. Gait Posture 2014, 40, 26–31. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, K.; Vorpahl, K.A.; Heiderscheit, B. Effect of cushioned insoles on impact forces during running. J. Am. Podiatr. Med. Assoc. 2008, 98, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maropoulos, S.; Korakidis, G.; Fasnakis, D.; Papanikolaou, S.; Papagiannaki, M.; Arabazti, F. The effect of cushioning system on impact attenuation of athletic footwear. MATEC Web Conf. 2017, 112. [Google Scholar] [CrossRef] [Green Version]
- Dib, M.Y.; Smith, J.; Bernhardt, K.A.; Kaufman, K.R.; Miles, K.A. Effect of environmental temperature on shock absorption properties of running shoes. Clin. J. Sport Med. 2005, 15, 172–176. [Google Scholar] [CrossRef]
- Speed, G.; Harris, K.; Keegel, T. The effect of cushioning materials on musculoskeletal discomfort and fatigue during prolonged standing at work: A systematic review. Appl. Ergon. 2018, 70, 300–314. [Google Scholar] [CrossRef]
- Lippa, N.; Hall, E.; Piland, S.; Gould, T.; Rawlins, J. Mechanical ageing protocol selection affects macroscopic performance and molecular level properties of ethylene vinyl acetate (EVA) running shoe midsole foam. Procedia Eng. 2014, 72, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Brückner, K.; Odenwald, S.; Schwanitz, S.; Heidenfelder, J.; Milani, T. Polyurethane-foam midsoles in running shoes—Impact energy and damping. Procedia Eng. 2010, 2, 2789–2793. [Google Scholar] [CrossRef] [Green Version]
- Heidenfelder, J.; Sterzing, T.; Milani, T.L. Biomechanical wear testing of running shoes. Footwear Sci. 2009, 1, 16–17. [Google Scholar] [CrossRef]
- Verdejo, R.; Mills, N.J. Heel-shoe interactions and the durability of EVA foam running-shoe midsoles. J. Biomech. 2004, 37, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Bannych, A.; Katz, S.; Barkay, Z.; Lachman, N. Preserving softness and elastic recovery in silicone-based stretchable electrodes using carbon nanotubes. Polymers 2020, 12, 1345. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Fan, T.; Ye, N.; Wu, W.; Huang, D.; Wang, D.; Wang, Z.; Zhang, L. Plasticization effect of bio-based plasticizers from soybean oil for tire tread rubber. Polymers 2020, 12, 623. [Google Scholar] [CrossRef] [Green Version]
- Warasitthinon, N.; Robertson, C.G. Interpretation of the tand peak height for particle-filled rubber and polymer nanocomposites with relevance to tire tread performance balance. Rubber Chem. Technol. 2018, 91, 577–594. [Google Scholar] [CrossRef]
- Luo, W.; Huang, Y.; Yin, B.; Jiang, X.; Hu, X. Fatigue life assessment of filled rubber by hysteresis induced self-heating temperature. Polymers 2020, 12, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plagge, J.; Klüppel, M. Micromechanics of stress-softening and hysteresis of filler reinforced elastomers with applications to thermo-oxidative aging. Polymers 2020, 12, 1350. [Google Scholar] [CrossRef]
- Carleo, F.; Plagge, J.; Whear, R.; Busfield, J.; Klüppel, M. Modeling the full time-dependent phenomenology of filled rubber for use in anti-vibration design. Polymers 2020, 12, 841. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, S.; Agrawal, S.L.; Bandyopadhyay, S.; Chakraborty, S.; Mukhopadhyay, R.; Malkani, R.K.; Ameta, S.C. Characterisation of eco-friendly processing aids for rubber compound: Part II. Polym. Test. 2008, 27, 277–283. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Nozu, S.; Inoue, T. Shock-absorption properties of functionally graded EVA laminates for footwear design. Polym. Test. 2016, 54, 98–103. [Google Scholar] [CrossRef]
- Tsouknidas, A.; Pantazopoulos, M.; Sagris, D.; Fasnakis, D.; Maropoulos, S.; Arabatzi, F.; Michailidis, N. The effect of body mass on the shoe-athlete interaction. Appl. Bionics Biomech. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Blackmore, T.; Jessop, D.; Bruce-Low, S.; Scurr, J. The cushioning properties of athletic socks: An impact testing perspective. Clin. Biomech. 2013, 28, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.T.; Shiang, T.Y. Effects of insoles and additional shock absorption foam on the cushioning properties of sport shoes. J. Appl. Biomech. 2007, 23, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dura, J.V.; Garcia, A.C.; Solaz, J. Testing shock absorbing materials: The application of viscoelastic linear model. Sport. Eng. 2002, 5, 9–14. [Google Scholar] [CrossRef]
- Ramirez, B.J.; Gupta, V. Energy absorption and low velocity impact response of open-cell polyurea foams. J. Dyn. Behav. Mater. 2019, 5, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Shorten, M.R. The Energetics and Running. J. Biomech. 1993, 26, 41–51. [Google Scholar] [CrossRef]
- Nigg, B.M.; Segesser, B. Biomechanical and orthopedic concepts in sport shoe construction. Med. Sci. Sports Exerc. 1992, 24, 595–602. [Google Scholar] [CrossRef]
- Willwacher, S.; König, M.; Potthast, W.; Brüggemann, G. Does specific footwear facilitate energy storage and return at the metatarsophalangeal joint in running? J. Appl. Biomech. 2013, 29, 583–592. [Google Scholar] [CrossRef] [Green Version]
Component | Concentration (phr a) |
---|---|
NR | 100 |
Zinc oxide | 3.0 |
Stearic acid | 1.5 |
Wingstay L b | 1.0 |
MBT | 2.0 |
Sulfur | 4.0 |
CB (X1) c | 10 ≤ X1 ≤ 100 |
PO (X2) c | 5 ≤ X2 ≤ 100 |
CC (X3) c | 0 ≤ X3 ≤ 200 |
Specimen | Independent Variables a | Experimental Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
X1(phr) | X2(phr) | X3(phr) | Mechanical Properties | Maximum Force at Impact Energy (N) | ||||||
Percentage Resilience (%) | Hardness (Shore A) | 3 J | 4 J | 5 J | 6 J | 7 J | ||||
1 | 10 | 100 | 0 | 69.10 | 15.1 | 1285 | 1436 | 1808 | 2140 | 2377 |
2 | 10 | 100 | 200 | 45.54 | 18.1 | 1132 | 1469 | 1719 | 1925 | 2212 |
3 | 10 | 5 | 0 | 62.54 | 31.0 | 1551 | 1814 | 2087 | 2350 | 2540 |
4 | 55 | 52.5 | 100 | 44.81 | 46.3 | 1565 | 1893 | 2204 | 2475 | 2681 |
5 | 55 | 52.5 | 0 | 47.01 | 27.7 | 1283 | 1554 | 1796 | 2030 | 2234 |
6 | 55 | 52.5 | 200 | 30.54 | 53.9 | 1773 | 2026 | 2432 | 2810 | 3063 |
7 | 10 | 5 | 200 | 42.65 | 74.4 | 2510 | 2872 | 3108 | 3504 | 3777 |
8 | 55 | 5 | 100 | 25.69 | 78.4 | 2523 | 2926 | 3257 | 3560 | 3699 |
9 | 100 | 5 | 200 | 9.37 | 95.3 | 3122 | 3490 | 3864 | 4276 | 4635 |
10 | 55 | 52.5 | 100 | 43.36 | 47.1 | 1558 | 1885 | 2193 | 2493 | 2703 |
11 | 100 | 100 | 200 | 22.29 | 56.9 | 1743 | 2099 | 2307 | 2607 | 2859 |
12 | 100 | 5 | 0 | 20.14 | 86.6 | 2771 | 3169 | 3485 | 3677 | 4126 |
13 | 55 | 52.5 | 100 | 44.09 | 46.5 | 1579 | 1867 | 2212 | 2482 | 2707 |
14 | 10 | 52.5 | 100 | 64.17 | 30.9 | 1577 | 1888 | 2149 | 2407 | 2625 |
15 | 55 | 100 | 100 | 45.54 | 27.8 | 1368 | 1695 | 2035 | 2328 | 2702 |
16 | 100 | 52.5 | 100 | 21.20 | 70.1 | 2279 | 2595 | 2862 | 3201 | 3437 |
17 | 55 | 52.5 | 100 | 45.54 | 42.4 | 1585 | 1888 | 2186 | 2501 | 2699 |
18 | 55 | 52.5 | 100 | 45.25 | 44.7 | 1595 | 1874 | 2209 | 2498 | 2688 |
19 | 100 | 100 | 0 | 48.50 | 31.1 | 1171 | 1558 | 1862 | 2201 | 2495 |
20 | 55 | 52.5 | 100 | 46.27 | 45.0 | 1573 | 1882 | 2201 | 2490 | 2696 |
Responses Variable | Model Equations | R2 | Adjusted R2 | Predicted R2 |
---|---|---|---|---|
Hardness (Shore A) | Y = 40.87 + 0.3788X1 − 0.4564X2 + 0.1072X3 | 0.9051 | 0.8873 | 0.8073 |
Percentage resilience (%) | Y = 63.30 − 0.4588X1 + 0.0462X2 − 0.09696X3 + 0.001861X1X2 | 0.9253 | 0.9054 | 0.8536 |
Peak impact force at 3 J (N) | Y = 1893 + 1.89X1 − 16.35X2 + 2.219X3 + 0.0813X12 + 0.0807X22 − 0.0781X1X2 | 0.9219 | 0.8859 | 0.6789 |
Peak impact force at 4 J (N) | Y = 2207 + 2.94X1 − 19.18X2 + 2.425X3 + 0.0767X12 + 0.0994X22 − 0.0714X1X2 | 0.9496 | 0.9202 | 0.7713 |
Peak impact force at 5 J (N) | Y = 2225 + 12.44X1 − 19.54X2 + 3.834X3 + 0.1369X22 − 0.08804X1X2 − 0.0275 X2X3 | 0.9419 | 0.9151 | 0.7329 |
Peak impact force at 6 J (N) | Y = 2447 + 12.24X1 − 19.31 X2 + 4.882 X3 + 0.1410X22 − 0.0793 X1X2 − 0.0411X2X3 | 0.9434 | 0.9174 | 0.7459 |
Peak impact force at 7 J (N) | Y = 2640 + 14.09 X1 − 21.54 X2 + 4.911 X3 + 0.1724 X22− 0.0982X1X2 − 0.0407X2X3 | 0.9394 | 0.9114 | 0.7254 |
Methodology | CB (phr) | PO (phr) | CC (phr) | PR (%) | Hardness (Shore A) |
---|---|---|---|---|---|
Predicted | 10 | 82 | 0 | 69.10 | 6.5 |
Experimental | 66.30 | 16.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srewaradachpisal, S.; Dechwayukul, C.; Chatpun, S.; Spontak, R.J.; Thongruang, W. Optimization of the Rubber Formulation for Footwear Applications from the Response Surface Method. Polymers 2020, 12, 2032. https://doi.org/10.3390/polym12092032
Srewaradachpisal S, Dechwayukul C, Chatpun S, Spontak RJ, Thongruang W. Optimization of the Rubber Formulation for Footwear Applications from the Response Surface Method. Polymers. 2020; 12(9):2032. https://doi.org/10.3390/polym12092032
Chicago/Turabian StyleSrewaradachpisal, Satta, Charoenyutr Dechwayukul, Surapong Chatpun, Richard J. Spontak, and Wiriya Thongruang. 2020. "Optimization of the Rubber Formulation for Footwear Applications from the Response Surface Method" Polymers 12, no. 9: 2032. https://doi.org/10.3390/polym12092032
APA StyleSrewaradachpisal, S., Dechwayukul, C., Chatpun, S., Spontak, R. J., & Thongruang, W. (2020). Optimization of the Rubber Formulation for Footwear Applications from the Response Surface Method. Polymers, 12(9), 2032. https://doi.org/10.3390/polym12092032