Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping
Abstract
1. Introduction
2. Conjugated Polymers Used for Separation
2.1. Polymer Backbone Structure Developed for Separation
2.2. Polymer Side Chain Design for Separation
2.3. Removable/Recyclable Polymers
2.3.1. Removable Polymers Containing Degradable Functional Groups
2.3.2. Removable/Recyclable Polymers with Conformation Change Mechanism
3. Parameters that Affect the Selectivity and Sorting Yield
3.1. Possible Mechanisms for Selecting s-SWNT
3.2. Polymer Weight
3.3. Polymer/SWNT Ratio
3.4. Solvent
3.5. Dispersion Temperature
3.6. Other Factors
4. Applications of Polymer-Sorted SWNTs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.F.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558. [Google Scholar] [CrossRef]
- Berber, S.; Kwon, Y.K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar] [CrossRef] [PubMed]
- Chortos, A.; Zhu, C.X.; Oh, J.Y.; Yan, X.Z.; Pochorovski, I.; To, J.W.F.; Liu, N.; Kraft, U.; Murmann, B.; Bao, Z.N. Investigating Limiting Factors in Stretchable All-Carbon Transistors for Reliable Stretchable Electronics. ACS Nano 2017, 11, 7925–7937. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Tersoff, J.; Farmer, D.B.; Zhu, Y.; Han, S.-J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372. [Google Scholar] [CrossRef]
- Brady, G.J.; Way, A.J.; Safron, N.S.; Evensen, H.T.; Gopalan, P.; Arnold, M.S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240. [Google Scholar] [CrossRef]
- Park, S.; Pitner, G.; Giri, G.; Koo, J.H.; Park, J.; Kim, K.; Wang, H.; Sinclair, R.; Wong, H.S.P.; Bao, Z. Large-Area Assembly of Densely Aligned Single-Walled Carbon Nanotubes Using Solution Shearing and Their Application to Field-Effect Transistors. Adv. Mater. 2015, 27, 2656–2662. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, K.; Gao, B.; Li, L.; Jin, H.; Li, Q. Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices. Adv. Mater. 2019, 31, 1800750. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, A.; Luque, H.L.; Sun, H.; Ji, D.; Noh, Y.-Y. Perovskite and Conjugated Polymer Wrapped Semiconducting Carbon Nanotube Hybrid Films for High-Performance Transistors and Phototransistors. ACS Nano 2019, 13, 3971–3981. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Ling, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xiang, L.; Yang, Y.J.; Xiao, M.M.; Han, J.; Ding, L.; Zhang, Z.Y.; Hu, Y.F.; Peng, L.M. High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil. ACS Nano 2018, 12, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64. [Google Scholar] [CrossRef]
- Journet, C.; Maser, W.K.; Bernier, P.; Loiseau, A.; delaChapelle, M.L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J.E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, 756–758. [Google Scholar] [CrossRef]
- Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D.T.; Smalley, R.E. Catalytic growth of single-walled nanoyubes by laser vaporization. Chem. Phys. Lett. 1995, 243, 49–54. [Google Scholar] [CrossRef]
- Kim, K.S.; Cota-Sanchez, G.; Kingston, C.T.; Imris, M.; Simard, B.; Soucy, G. Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D Appl. Phys. 2007, 40, 2375–2387. [Google Scholar] [CrossRef]
- Nikolaev, P.; Bronikowski, M.J.; Bradley, R.K.; Rohmund, F.; Colbert, D.T.; Smith, K.A.; Smalley, R.E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999, 313, 91–97. [Google Scholar] [CrossRef]
- Kitiyanan, B.; Alvarez, W.E.; Harwell, J.H.; Resasco, D.E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett. 2000, 317, 497–503. [Google Scholar] [CrossRef]
- Lei, T.; Pochorovski, I.; Bao, Z. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method. Acc. Chem. Res. 2017, 50, 1096–1104. [Google Scholar] [CrossRef]
- Wang, J.; Jin, X.; Liu, Z.; Yu, G.; Ji, Q.; Wei, H.; Zhang, J.; Zhang, K.; Li, D.; Yuan, Z.; et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 2018, 1, 326–331. [Google Scholar] [CrossRef]
- Tulevski, G.S.; Franklin, A.D.; Frank, D.; Lobez, J.M.; Cao, Q.; Park, H.; Afzali, A.; Han, S.J.; Hannon, J.B.; Haensch, W. Toward High-Performance Digital Logic Technology with Carbon Nanotubes. ACS Nano 2014, 8, 8730–8745. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S.Z.; Loi, M.A. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping. Acc. Chem. Res. 2014, 47, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Hersam, M.C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Janas, D. Towards monochiral carbon nanotubes: A review of progress in the sorting of single-walled carbon nanotubes. Mater. Chem. Front. 2018, 2, 36–63. [Google Scholar] [CrossRef]
- Gerstel, P.; Klumpp, S.; Hennrich, F.; Altintas, O.; Eaton, T.R.; Mayor, M.; Barner-Kowollik, C.; Kappes, M.M. Selective dispersion of single-walled carbon nanotubes via easily accessible conjugated click polymers. Polym. Chem. 2012, 3, 1966–1970. [Google Scholar] [CrossRef]
- Liang, L.Y.; Xie, W.Y.; Fang, S.X.; He, F.; Yin, B.H.; Tlili, C.; Wang, D.Q.; Qiu, S.; Li, Q.W. High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions. J. Mater. Chem. C 2017, 5, 11339–11368. [Google Scholar] [CrossRef]
- Arnold, M.S.; Green, A.A.; Hulvat, J.F.; Stupp, S.I.; Hersam, M.C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65. [Google Scholar] [CrossRef]
- Fagan, J.A.; Zheng, M.; Rastogi, V.; Simpson, J.R.; Khripin, C.Y.; Batista, C.A.S.; Walker, A.R.H. Analyzing Surfactant Structures on Length and Chirality Resolved (6,5) Single-Wall Carbon Nanotubes by Analytical Ultracentrifugation. ACS Nano 2013, 7, 3373–3387. [Google Scholar] [CrossRef]
- Zheng, M.; Jagota, A.; Semke, E.D.; Diner, B.A.; McLean, R.S.; Lustig, S.R.; Richardson, R.E.; Tassi, N.G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342. [Google Scholar] [CrossRef]
- Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309. [Google Scholar] [CrossRef] [PubMed]
- Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M.M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Khripin, C.Y.; Fagan, J.A.; Zheng, M. Spontaneous Partition of Carbon Nanotubes in Polymer-Modified Aqueous Phases. J. Am. Chem. Soc. 2013, 135, 6822–6825. [Google Scholar] [CrossRef] [PubMed]
- Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R.J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646. [Google Scholar] [CrossRef]
- Ozawa, H.; Fujigaya, T.; Song, S.; Suh, H.; Nakashima, N. Different Chiral Selective Recognition/Extraction of (n,m)Single-walled Carbon Nanotubes Using Copolymers Carrying a Carbazole or Fluorene Moiety. Chem. Lett. 2011, 40, 470–472. [Google Scholar] [CrossRef]
- Mistry, K.S.; Larsen, B.A.; Blackburn, J.L. High-Yield Dispersions of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes with Tunable Narrow Chirality Distributions. ACS Nano 2013, 7, 2231–2239. [Google Scholar] [CrossRef]
- Wang, H.; Bao, Z. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 2015, 10, 737–758. [Google Scholar] [CrossRef]
- Ozawa, H.; Fujigaya, T.; Niidome, Y.; Hotta, N.; Fujiki, M.; Nakashima, N. Rational Concept to Recognize/Extract Single-Walled Carbon Nanotubes with a Specific Chirality. J. Am. Chem. Soc. 2011, 133, 2651–2657. [Google Scholar] [CrossRef]
- Ding, J.; Li, Z.; Lefebvre, J.; Cheng, F.; Dubey, G.; Zou, S.; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G.P.; et al. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 2014, 6, 2328–2339. [Google Scholar] [CrossRef]
- Telg, H.; Duque, J.G.; Staiger, M.; Tu, X.; Hennrich, F.; Kappes, M.M.; Zheng, M.; Maultzsch, J.; Thomsen, C.; Doorn, S.K. Chiral Index Dependence of the G(+) and G(-) Raman Modes in Semiconducting Carbon Nanotubes. ACS Nano 2012, 6, 904–911. [Google Scholar] [CrossRef]
- Bachilo, S.M.; Strano, M.S.; Kittrell, C.; Hauge, R.H.; Smalley, R.E.; Weisman, R.B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Shao, L.-L.; Zheng, Y.-Q.; Pitner, G.; Fang, G.; Zhu, C.; Li, S.; Beausoleil, R.; Wong, H.S.P.; Huang, T.-C.; et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.M.; Wang, B.; Chen, Y.; Li, L.J. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 2007, 7, 3013–3017. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Loi, M.A.; Figueiredo de Carvalho, E.J.; dos Santos, M.C. Selective Wrapping and Supramolecular Structures of Polyfluorene-Carbon Nanotube Hybrids. ACS Nano 2011, 5, 3993–3999. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Park, J.Y.; Huang, S.M.; Liu, J.; McEuen, P.L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805. [Google Scholar] [CrossRef]
- Chen, Z.H.; Appenzeller, J.; Knoch, J.; Lin, Y.M.; Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502. [Google Scholar] [CrossRef]
- Stranks, S.D.; Habisreutinger, S.N.; Dirks, B.; Nicholas, R.J. Novel Carbon Nanotube-Conjugated Polymer Nanohybrids Produced By Multiple Polymer Processing. Adv. Mater. 2013, 25, 4365–4371. [Google Scholar] [CrossRef]
- Tange, M.; Okazaki, T.; Iijima, S. Selective Extraction of Large-Diameter Single-Wall Carbon Nanotubes with Specific Chiral Indices by Poly(9,9-dioctylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2011, 133, 11908–11911. [Google Scholar] [CrossRef]
- Stranks, S.D.; Baker, A.M.R.; Alexander-Webber, J.A.; Dirks, B.; Nicholas, R.J. Production of High-Purity Single-Chirality Carbon Nanotube Hybrids by Selective Polymer Exchange. Small 2013, 9, 2245–2249. [Google Scholar] [CrossRef]
- Zhang, P.; Yi, W.H.; Bai, L.; Tian, Y.L.; Hou, J.; Jin, W.Q.; Si, J.H.; Hou, X. Enrichment of large-diameter semiconducting single-walled carbon nanotubes by a mixed-extractor strategy. Chem. Asian J. 2019, 14, 3855–3862. [Google Scholar] [CrossRef]
- Berton, N.; Lemasson, F.; Poschlad, A.; Meded, V.; Tristram, F.; Wenzel, W.; Hennrich, F.; Kappes, M.M.; Mayor, M. Selective Dispersion of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes with Pyridine-Containing Copolymers. Small 2014, 10, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Tange, M.; Okazaki, T.; Iijima, S. Selective Extraction of Semiconducting Single-Wall Carbon Nanotubes by Poly(9,9-dioctylfluorene-alt-pyridine) for 1.5 μm Emission. ACS Appl. Mater. Interfaces 2012, 4, 6458–6462. [Google Scholar] [CrossRef] [PubMed]
- Brady, G.J.; Joo, Y.; Roy, S.S.; Gopalan, P.; Arnold, M.S. High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Appl. Phys. Lett. 2014, 104, 083107. [Google Scholar] [CrossRef]
- Brady, G.J.; Joo, Y.; Wu, M.-Y.; Shea, M.J.; Gopalan, P.; Arnold, M.S. Polyfluorene-Sorted, Carbon Nanotube Array Field-Effect Transistors with Increased Current Density and High On/Off Ratio. ACS Nano 2014, 8, 11614–11621. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.S.; Cao, Q.; Tulevski, G.; Jenkins, K.A.; Nela, L.; Farmer, D.B.; Han, S.J. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 2018, 1, 191–196. [Google Scholar] [CrossRef]
- Berger, F.J.; Luttgens, J.; Nowack, T.; Kutsch, T.; Lindenthal, S.; Kistner, L.; Muller, C.C.; Bongartz, L.M.; Lumsargis, V.A.; Zakharko, Y.; et al. Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp3 Functionalization in Organic Solvents. ACS Nano 2019, 13, 9259–9269. [Google Scholar] [CrossRef]
- Tange, M.; Okazaki, T.; Iijima, S. Influence of structure-selective fluorene-based polymer wrapping on optical transitions of single-wall carbon nanotubes. Nanoscale 2014, 6, 248–254. [Google Scholar] [CrossRef]
- Ozawa, H.; Ide, N.; Fujigaya, T.; Niidome, Y.; Nakashima, N. One-pot Separation of Highly Enriched (6,5)-Single-walled Carbon Nanotubes Using a Fluorene-based Copolymer. Chem. Lett. 2011, 40, 239–241. [Google Scholar] [CrossRef]
- Fong, D.; Adronov, A. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chem. Sci. 2017, 8, 7292–7305. [Google Scholar] [CrossRef]
- Lemasson, F.A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin, S.; Barner-Kowollik, C.; Wenzel, W.; Kappes, M.M.; Mayor, M. Selective Dispersion of Single-Walled Carbon Nanotubes with Specific Chiral Indices by Poly(N-decyl-2,7-carbazole). J. Am. Chem. Soc. 2011, 133, 652–655. [Google Scholar] [CrossRef]
- Lemasson, F.; Berton, N.; Tittmann, J.; Hennrich, F.; Kappes, M.M.; Mayor, M. Polymer Library Comprising Fluorene and Carbazole Homo- and Copolymers for Selective Single-Walled Carbon Nanotubes Extraction. Macromolecules 2012, 45, 713–722. [Google Scholar] [CrossRef]
- Zou, J.; Liu, L.; Chen, H.; Khondaker, S.I.; McCullough, R.D.; Huo, Q.; Zhai, L. Dispersion of pristine carbon nanotubes using conjugated block copolymers. Adv. Mater. 2008, 20, 2055–2060. [Google Scholar] [CrossRef]
- Gu, H.; Swager, T.M. Fabrication of Free-standing, Conductive, and Transparent Carbon Nanotube Films. Adv. Mater. 2008, 20, 4433–4437. [Google Scholar] [CrossRef]
- Lee, H.W.; You, W.; Barman, S.; Hellstrom, S.; LeMieux, M.C.; Oh, J.H.; Liu, S.; Fujiwara, T.; Wang, W.M.; Chen, B.; et al. Lyotropic Liquid-Crystalline Solutions of High-Concentration Dispersions of Single-Walled Carbon Nanotubes with Conjugated Polymers. Small 2009, 5, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Yoon, Y.; Park, S.; Oh, J.H.; Hong, S.; Liyanage, L.S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y.J.; et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541. [Google Scholar] [CrossRef]
- Wang, H.; Koleilat, G.I.; Liu, P.; Jimenez-Oses, G.; Lai, Y.-C.; Vosgueritchian, M.; Fang, Y.; Park, S.; Houk, K.N.; Bao, Z. High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors. ACS Nano 2014, 8, 2609–2617. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qian, L.; Xu, W.; Nie, S.; Gu, W.; Zhang, J.; Zhao, J.; Lin, J.; Chen, Z.; Cui, Z. High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes. Nanoscale 2013, 5, 4156–4161. [Google Scholar] [CrossRef]
- Liu, D.; Li, P.; Yu, X.; Gu, J.; Han, J.; Zhang, S.; Li, H.; Jin, H.; Qiu, S.; Li, Q.; et al. A Mixed-Extractor Strategy for Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes. Adv. Mater. 2017, 29, 1603565. [Google Scholar] [CrossRef]
- Ozawa, H.; Ide, N.; Fujigaya, T.; Niidome, Y.; Nakashima, N. Supramolecular Hybrid of Metal Nanoparticles and Semiconducting Single-Walled Carbon Nanotubes Wrapped by a Fluorene-Carbazole Copolymer. Chem. Eur. J. 2011, 17, 13438–13444. [Google Scholar] [CrossRef]
- Qian, L.; Xu, W.; Fan, X.; Wang, C.; Zhang, J.; Zhao, J.; Cui, Z. Electrical and Photoresponse Properties of Printed Thin-Film Transistors Based on Poly(9,9-dioctylfluorene-co-bithiophene) Sorted Large-Diameter Semiconducting Carbon Nanotubes. J. Phys. Chem. C 2013, 117, 18243–18250. [Google Scholar] [CrossRef]
- He, Y.; Luo, H.; Jin, H.; Qiu, S.; Li, Q. Thiophene-containing polymer on sorting semiconducting single-walled carbon nanotubes. Polymer 2018, 159, 59–63. [Google Scholar] [CrossRef]
- Derenskyi, V.; Gomulya, W.; Gao, J.; Bisri, S.Z.; Pasini, M.; Loo, Y.-L.; Loi, M.A. Semiconducting SWNTs sorted by polymer wrapping: How pure are they? Appl. Phys. Lett. 2018, 112, 072106. [Google Scholar] [CrossRef]
- Rice, N.A.; Bodnaryk, W.J.; Mirka, B.; Melville, O.A.; Adronov, A.; Lessard, B.H. Polycarbazole-Sorted Semiconducting Single-Walled Carbon Nanotubes for Incorporation into Organic Thin Film Transistors. Adv. Electron. Mater. 2019, 5, 1800539. [Google Scholar] [CrossRef]
- Berton, N.; Lemasson, F.; Tittmann, J.; Stuerzl, N.; Hennrich, F.; Kappes, M.M.; Mayor, M. Copolymer-Controlled Diameter-Selective Dispersion of Semiconducting Single-Walled Carbon Nanotubes. Chem. Mater. 2011, 23, 2237–2249. [Google Scholar] [CrossRef]
- Li, H.; Zhang, F.; Qiu, S.; Lv, N.; Zhao, Z.; Li, Q.; Cui, Z. Designing large-plane conjugated copolymers for the high-yield sorting of semiconducting single-walled carbon nanotubes. Chem. Commun. 2013, 49, 10492–10494. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Mei, J.; Liu, P.; Schmidt, K.; Jimenez-Oses, G.; Osuna, S.; Fang, L.; Tassone, C.J.; Zoombelt, A.P.; Sokolov, A.N.; et al. Scalable and Selective Dispersion of Semiconducting Arc-Discharged Carbon Nanotubes by Dithiafulvalene/Thiophene Copolymers for Thin Film Transistors. ACS Nano 2013, 7, 2659–2668. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Tange, M.; Xu, W.; Xu, W.; Zhang, K.; Guo, W.; Okazaki, T.; Cui, Z. Sorting semiconducting single walled carbon nanotubes by poly(9,9-dioctylfluorene) derivatives and application for ammonia gas sensing. Carbon 2015, 94, 903–910. [Google Scholar] [CrossRef]
- Aumaitre, C.; Fong, D.; Adronov, A.; Morin, J.-F. Anthanthrene-based conjugated polymers for the dispersion of single-walled carbon nanotubes. Polym. Chem. 2019, 10, 6440–6446. [Google Scholar] [CrossRef]
- Si, R.; Wei, L.; Wang, H.; Su, D.; Mushrif, S.H.; Chen, Y. Extraction of (9,8) Single-Walled Carbon Nanotubes by Fluorene-Based Polymers. Chem. Asian J. 2014, 9, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Yuen, J.D.; Wudl, F. Strong acceptors in donor-acceptor polymers for high performance thin film transistors. Energy Environ. Sci. 2013, 6, 392–406. [Google Scholar] [CrossRef]
- Salazar-Rios, J.M.; Gomulya, W.; Derenskyi, V.; Yang, J.; Bisri, S.Z.; Chen, Z.; Facchetti, A.; Loi, M.A. Selecting Semiconducting Single-Walled Carbon Nanotubes with Narrow Bandgap Naphthalene Diimide-Based Polymers. Adv. Electron. Mater. 2015, 1, 1500074. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Jimenez-Oses, G.; Liu, P.; Fang, Y.; Zhang, J.; Lai, Y.-C.; Park, S.; Chen, L.; Houk, K.N.; et al. N-Type Conjugated Polymer-Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOS-Like Circuits. Adv. Funct. Mater. 2015, 25, 1837–1844. [Google Scholar] [CrossRef]
- Lei, T.; Lai, Y.-C.; Hong, G.; Wang, H.; Hayoz, P.; Weitz, R.T.; Chen, C.; Dai, H.; Bao, Z. Diketopyrrolopyrrole (DPP)-Based Donor-Acceptor Polymers for Selective Dispersion of Large-Diameter Semiconducting Carbon Nanotubes. Small 2015, 11, 2946–2954. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Pitner, G.; Chen, X.; Hong, G.; Park, S.; Hayoz, P.; Weitz, R.T.; Wong, H.-S.P.; Bao, Z. Dispersion of High-Purity Semiconducting Arc-Discharged Carbon Nanotubes Using Backbone Engineered Diketopyrrolopyrrole (DPP)-Based Polymers. Adv. Electron. Mater. 2016, 2, 1500299. [Google Scholar] [CrossRef]
- Fong, D.; Adronov, A. Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules 2017, 50, 8002–8009. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C.W.; Chen, L.C.; Nicholas, R.J. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 3543–3553. [Google Scholar] [CrossRef]
- Gerstel, P.; Klumpp, S.; Hennrich, F.; Poschlad, A.; Meded, V.; Blasco, E.; Wenzel, W.; Kappes, M.M.; Barner-Kowollik, C. Highly Selective Dispersion of Single-Walled Carbon Nanotubes via Polymer Wrapping: A Combinatorial Study via Modular Conjugation. ACS Macro Lett. 2014, 3, 10–15. [Google Scholar] [CrossRef]
- Gao, J.; Kwak, M.; Wildeman, J.; Hermann, A.; Loi, M.A. Effectiveness of sorting single-walled carbon nanotubes by diameter using polyfluorene derivatives. Carbon 2011, 49, 333–338. [Google Scholar] [CrossRef]
- Gomulya, W.; Diaz Costanzo, G.; Figueiredo de Carvalho, E.J.; Bisri, S.Z.; Derenskyi, V.; Fritsch, M.; Froehlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; et al. Semiconducting Single-Walled Carbon Nanotubes on Demand by Polymer Wrapping. Adv. Mater. 2013, 25, 2948–2956. [Google Scholar] [CrossRef]
- Fukumaru, T.; Toshimitsu, F.; Fujigaya, T.; Nakashima, N. Effects of the chemical structure of polyfluorene on selective extraction of semiconducting single-walled carbon nanotubes. Nanoscale 2014, 6, 5879–5886. [Google Scholar] [CrossRef]
- Li, K.; Kardelis, V.; Adronov, A. “Click” generation of a conjugated polymer library for SWNT dispersion. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 2053–2058. [Google Scholar] [CrossRef]
- Berton, N.; Lemasson, F.; Hennrich, F.; Kappes, M.M.; Mayor, M. Influence of molecular weight on selective oligomer-assisted dispersion of single-walled carbon nanotubes and subsequent polymer exchange. Chem. Commun. 2012, 48, 2516–2518. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, Z.; Lefebvre, J.; Cheng, F.; Dunford, J.L.; Malenfant, P.R.L.; Humes, J.; Kroeger, J. A hybrid enrichment process combining conjugated polymer extraction and silica gel adsorption for high purity semiconducting single-walled carbon nanotubes (SWCNT). Nanoscale 2015, 7, 15741–15747. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, Z.; Lefebvre, J.; Du, X.; Malenfant, P.R.L. Mechanistic Consideration of pH Effect on the Enrichment of Semiconducting SWCNTs by Conjugated Polymer Extraction. J. Phys. Chem. C 2016, 120, 21946–21954. [Google Scholar] [CrossRef]
- Schiessl, S.P.; Froehlich, N.; Held, M.; Gannott, F.; Schweiger, M.; Forster, M.; Scherf, U.; Zaumseil, J. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors. ACS Appl. Mater. Interfaces 2015, 7, 682–689. [Google Scholar] [CrossRef]
- Rice, N.A.; Adronov, A. Selective Interactions of a High-Molecular-Weight Polycarbazole with Different Commercial Nanotube Samples. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 2738–2747. [Google Scholar] [CrossRef]
- Blouin, N.; Leclerc, M. Poly(2,7-carbazole)s: Structure-property relationships. Acc. Chem. Res. 2008, 41, 1110–1119. [Google Scholar] [CrossRef]
- Boudreault, P.-L.T.; Beaupre, S.; Leclerc, M. Polycarbazoles for plastic electronics. Polym. Chem. 2010, 1, 127–136. [Google Scholar] [CrossRef]
- Rice, N.A.; Adronov, A. Supramolecular Interactions of High Molecular Weight Poly(2,7-carbazole)s with Single-Walled Carbon Nanotubes. Macromolecules 2013, 46, 3850–3860. [Google Scholar] [CrossRef]
- Gu, J.; Han, J.; Liu, D.; Yu, X.; Kang, L.; Qiu, S.; Jin, H.; Li, H.; Li, Q.; Zhang, J. Solution-Processable High-Purity Semiconducting SWCNTs for Large-Area Fabrication of High-Performance Thin-Film Transistors. Small 2016, 12, 4993–4999. [Google Scholar] [CrossRef]
- Kanimozhi, C.; Brady, G.J.; Shea, M.J.; Huang, P.S.; Joo, Y.; Arnold, M.S.; Gopalan, P. Structurally Analogous Degradable Version of Fluorene-Bipyridine Copolymer with Exceptional Selectivity for Large-Diameter Semiconducting Carbon Nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 40734–40742. [Google Scholar] [CrossRef] [PubMed]
- Izard, N.; Kazaoui, S.; Hata, K.; Okazaki, T.; Saito, T.; Iijima, S.; Minami, N. Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. Appl. Phys. Lett. 2008, 92, 243112. [Google Scholar] [CrossRef]
- Bisri, S.Z.; Gao, J.; Derenskyi, V.; Gomulya, W.; Iezhokin, I.; Gordiichuk, P.; Herrmann, A.; Loi, M.A. High Performance Ambipolar Field-Effect Transistor of Random Network Carbon Nanotubes. Adv. Mater. 2012, 24, 6147–6152. [Google Scholar] [CrossRef]
- Gao, T.Z.; Lei, T.; Molina-Lopez, F.; Bao, Z. Enhanced Process Integration and Device Performance of Carbon Nanotubes via Flocculation. Small Methods 2018, 2, 1800189. [Google Scholar] [CrossRef]
- Wang, W.Z.; Li, W.F.; Pan, X.Y.; Li, C.M.; Li, L.-J.; Mu, Y.G.; Rogers, J.A.; Chan-Park, M.B. Degradable Conjugated Polymers: Synthesis and Applications in Enrichment of Semiconducting Single-Walled Carbon Nanotubes. Adv. Funct. Mater. 2011, 21, 1643–1651. [Google Scholar] [CrossRef]
- Lemasson, F.; Tittmann, J.; Hennrich, F.; Stuerzl, N.; Malik, S.; Kappes, M.M.; Mayor, M. Debundling, selection and release of SWNTs using fluorene-based photocleavable polymers. Chem. Commun. 2011, 47, 7428–7430. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jianfu, D.; Chang, G.; Lefebvre, J.; Malenfant, P.R.L. Decomposable s-Tetrazine Copolymer Enables Single-Walled Carbon Nanotube Thin Film Transistors and Sensors with Improved Sensitivity. Adv. Funct. Mater. 2018, 28, 1705568. [Google Scholar]
- Toshimitsu, F.; Nakashima, N. Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry. Nat. Commun. 2014, 5, 5041. [Google Scholar] [CrossRef]
- Pochorovski, I.; Wang, H.; Feldblyum, J.I.; Zhang, X.; Antaris, A.L.; Bao, Z. H-Bonded Supramolecular Polymer for the Selective Dispersion and Subsequent Release of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2015, 137, 4328–4331. [Google Scholar] [CrossRef]
- Lei, T.; Chen, X.; Pitner, G.; Wong, H.S.P.; Bao, Z. Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes. J. Am. Chem. Soc. 2016, 138, 802–805. [Google Scholar] [CrossRef]
- Zhang, Z.; Che, Y.; Smaldone, R.A.; Xu, M.; Bunes, B.R.; Moore, J.S.; Zang, L. Reversible Dispersion and Release of Carbon Nanotubes Using Foldable Oligomers. J. Am. Chem. Soc. 2010, 132, 14113–14117. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.J.; Moore, J.S. Helicogenicity of solvents in the conformational equilibrium of oligo(m-phenylene ethynylene)s: Implications for foldamer research. Proc. Natl. Acad. Sci. USA 2002, 99, 5053–5057. [Google Scholar] [CrossRef]
- Liang, S.; Chen, G.; Zhao, Y. Conformationally switchable TTFV-phenylacetylene polymers: Synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes. J. Mater. Chem. C 2013, 1, 5477–5490. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, Y.; Adronov, A. Selective and Reversible Noncovalent Functionalization of Single-Walled Carbon Nanotubes by a pH-Responsive Vinylogous Tetrathiafulvalene-Fluorene Copolymer. J. Am. Chem. Soc. 2014, 136, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.; Brady, G.J.; Shea, M.J.; Oviedo, M.B.; Kanimozhi, C.; Schmitt, S.K.; Wong, B.M.; Arnold, M.S.; Gopalan, P. Isolation of Pristine Electronics Grade Semiconducting Carbon Nano tubes by Switching the Rigidity of the Wrapping Polymer Backbone on Demand. ACS Nano 2015, 9, 10203–10213. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Hsieh, B.; Jimenez-Oses, G.; Liu, P.; Tassone, C.J.; Diao, Y.; Lei, T.; Houk, K.N.; Bao, Z.N. Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small 2015, 11, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Rice, N.A.; Subrahmanyam, A.V.; Laengert, S.E.; Adronov, A. The Effect of Molecular Weight on the Separation of Semiconducting Single-Walled Carbon Nanotubes Using Poly(2,7-carbazole)s. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 2510–2516. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, S.M.; Yoon, S.M.; Benayad, A.; Kim, K.K.; Kim, S.J.; Park, H.K.; Choi, J.Y.; Lee, Y.H. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 2008, 130, 2062–2066. [Google Scholar] [CrossRef]
- Varghese, N.; Ghosh, A.; Voggu, R.; Ghosh, S.; Rao, C.N.R. Selectivity in the Interaction of Electron Donor and Acceptor Molecules with Graphene and Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2009, 113, 16855–16859. [Google Scholar] [CrossRef]
- Liang, S.; Subrahmanyam, A.V.; Khadem, M.; Zhao, Y.M.; Adronov, A. Selective dispersion of single-walled carbon nanotubes with electron-rich fluorene-based copolymers. RSC Adv. 2016, 6, 25733–25740. [Google Scholar] [CrossRef]
- Wei, X.; Maimaitiyiming, X. Enrichment of highly pure large-diameter semiconducting SWCNTs by polyfluorene-containing pyrimidine ring. RSC Adv. 2019, 9, 32753–32758. [Google Scholar] [CrossRef]
- Cheng, F.; Imin, P.; Maunders, C.; Botton, G.; Adronov, A. Soluble, discrete supramolecular complexes of single-walled carbon nanotubes with fluorene-based conjugated polymers. Macromolecules 2008, 41, 2304–2308. [Google Scholar] [CrossRef]
- Rice, N.A.; Subrahmanyam, A.V.; Coleman, B.R.; Adronov, A. Effect of Induction on the Dispersion of Semiconducting and Metallic Single-Walled Carbon Nanotubes Using Conjugated Polymers. Macromolecules 2015, 48, 5155–5161. [Google Scholar] [CrossRef]
- Fong, D.; Bodnaryk, W.J.; Rice, N.A.; Saem, S.; Moran-Mirabal, J.M.; Adronov, A. Influence of Polymer Electronics on Selective Dispersion of Single-Walled Carbon Nanotubes. Chem. Eur. J. 2016, 22, 14560–14566. [Google Scholar] [CrossRef] [PubMed]
- Bodnaryk, W.J.; Fong, D.; Adronov, A. Enrichment of Metallic Carbon Nanotubes Using a Two-Polymer Extraction Method. ACS Omega 2018, 3, 16238–16245. [Google Scholar] [CrossRef]
- Imin, P.; Cheng, F.Y.; Adronov, A. The effect of molecular weight on the supramolecular interaction between a conjugated polymer and single-walled carbon nanotubes. Polym. Chem. 2011, 2, 1404–1408. [Google Scholar] [CrossRef]
- Jakubka, F.; Schiessl, S.P.; Martin, S.; Englert, J.M.; Hauke, F.; Hirsch, A.; Zaumseil, J. Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes. ACS Macro Lett. 2012, 1, 815–819. [Google Scholar] [CrossRef]
- Stuerzl, N.; Hennrich, F.; Lebedkin, S.; Kappes, M.M. Near Monochiral Single-Walled Carbon Nanotube Dispersions in Organic Solvents. J. Phys. Chem. C 2009, 113, 14628–14632. [Google Scholar] [CrossRef]
- Ouyang, J.Y.; Ding, J.F.; Lefebvre, J.; Li, Z.; Guo, C.; Kell, A.J.; Malenfant, P.R.L. Sorting of Semiconducting Single-Walled Carbon Nanotubes in Polar Solvents with an Amphiphilic Conjugated Polymer Provides General Guidelines for Enrichment. ACS Nano 2018, 12, 1910–1919. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Database. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 17 May 2020).
- Cheng, Q.H.; Debnath, S.; Gregan, E.; Byrne, H.J. Ultrasound-Assisted SWNTs Dispersion: Effects of Sonication Parameters and Solvent Properties. J. Phys. Chem. C 2010, 114, 8821–8827. [Google Scholar] [CrossRef]
- Gomulya, W.; Rios, J.M.S.; Derenskyi, V.; Bisri, S.Z.; Jung, S.; Fritsch, M.; Allard, S.; Scherf, U.; dos Santos, M.C.; Loi, M.A. Effect of temperature on the selection of semiconducting single walled carbon nanotubes using Poly(3-dodecylthiophene-2,5-diyl). Carbon 2015, 84, 66–73. [Google Scholar] [CrossRef]
- Han, J.; Ji, Q.Y.; Qiu, S.; Li, H.B.; Zhang, S.X.; Jin, H.H.; Li, Q.W. A versatile approach to obtain a high-purity semiconducting single-walled carbon nanotube dispersion with conjugated polymers. Chem. Commun. 2015, 51, 4712–4714. [Google Scholar] [CrossRef]
- Barman, S.N.; LeMieux, M.C.; Baek, J.; Rivera, R.; Bao, Z.N. Effects of Dispersion Conditions of Single-Walled Carbon Nanotubes on the Electrical Characteristics of Thin Film Network Transistors. ACS Appl. Mater. Interfaces 2010, 2, 2672–2678. [Google Scholar] [CrossRef] [PubMed]
- Shulaker, M.M.; Hills, G.; Patil, N.; Wei, H.; Chen, H.Y.; PhilipWong, H.S.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Zhang, Z.; Xiao, M.; Yang, Y.; Zhong, D.; Peng, L.-M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276. [Google Scholar] [CrossRef]
- Franklin, A.D.; Luisier, M.; Han, S.J.; Tulevski, G.; Breslin, C.M.; Gignac, L.; Lundstrom, M.S.; Haensch, W. Sub-10 nm Carbon Nanotube Transistor. Nano Lett. 2012, 12, 758–762. [Google Scholar] [CrossRef]
- Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M.D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Fu, Y.; He, Y.; Zhou, C. Air-Stable Conversion of Separated Carbon Nanotube Thin-Film Transistors from p-Type to n-Type Using Atomic Layer Deposition of High-kappa Oxide and Its Application in CMOS Logic Circuits. ACS Nano 2011, 5, 3284–3292. [Google Scholar] [CrossRef]
- Han, S.J.; Tang, J.S.; Kumar, B.; Falk, A.; Farmer, D.; Tulevski, G.; Jenkins, K.; Afzali, A.; Oida, S.; Ott, J.; et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 2017, 12, 861–865. [Google Scholar] [CrossRef]
- Wang, H.L.; Wei, P.; Li, Y.X.; Han, J.; Lee, H.R.; Naab, B.D.; Liu, N.; Wang, C.G.; Adijanto, E.; Tee, B.C.K.; et al. Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proc. Natl. Acad. Sci. USA 2014, 111, 4776–4781. [Google Scholar] [CrossRef]
- Geier, M.L.; McMorrow, J.J.; Xu, W.C.; Zhu, J.; Kim, C.H.; Marks, T.J.; Hersam, M.C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Brohmann, M.; Lorenz, R.; Hofstetter, Y.J.; Rother, M.; Sauter, E.; Zharnikov, M.; Vaynzof, Y.; Himmel, H.-J.; Zaumseil, J. Efficient n-Doping and Hole Blocking in Single-Walled Carbon Nanotube Transistors with 1,2,4,5-Tetrakis (tetramethylguanidino)benzene. ACS Nano 2018, 12, 5895–5902. [Google Scholar] [CrossRef]
- Yang, Y.J.; Ding, L.; Han, J.; Zhang, Z.Y.; Peng, L.M. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. ACS Nano 2017, 11, 4124–4132. [Google Scholar] [CrossRef]
- Chen, H.T.; Cao, Y.; Zhang, J.L.; Zhou, C.W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097. [Google Scholar] [CrossRef] [PubMed]
- Mirka, B.; Fong, D.; Rice, N.A.; Melville, O.A.; Adronov, A.; Lessard, B.H. Polyfluorene-Sorted Semiconducting Single-Walled Carbon Nanotubes for Applications in Thin-Film Transistors. Chem. Mater. 2019, 31, 2863–2872. [Google Scholar] [CrossRef]
- Rutherglen, C.; Kane, A.A.; Marsh, P.F.; Cain, T.A.; Hassan, B.I.; AlShareef, M.R.; Zhou, C.; Galatsis, K. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nat. Electron. 2019, 2, 530–539. [Google Scholar] [CrossRef]
- Joo, Y.; Brady, G.J.; Arnold, M.S.; Gopalan, P. Dose-Controlled, Floating Evaporative Self-assembly and Alignment of Semiconducting Carbon Nanotubes from Organic Solvents. Langmuir 2014, 30, 3460–3466. [Google Scholar] [CrossRef]
- Franklin, A.D. The road to carbon nanotube transistors. Nature 2013, 498, 443–444. [Google Scholar] [CrossRef]
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z.; et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef]
- Chortos, A.; Koleilat, G.I.; Pfattner, R.; Kong, D.S.; Lin, P.; Nur, R.; Lei, T.; Wang, H.L.; Liu, N.; Lai, Y.C.; et al. Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Adv. Mater. 2016, 28, 4441–4448. [Google Scholar] [CrossRef]
- Cao, X.; Lau, C.; Liu, Y.H.; Wu, F.Q.; Gui, H.; Liu, Q.Z.; Ma, Y.Q.; Wan, H.C.; Amer, M.R.; Zhou, C.W. Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors. ACS Nano 2016, 10, 9816–9822. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Cao, Y.; Zhou, C.W. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes. ACS Nano 2016, 10, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Xu, W.; Yang, Y.; Wan, X.; Shi, Y.; Wan, Q.; Zhao, J.; Cui, Z. Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin-Film Transistors. Adv. Funct. Mater. 2017, 27, 1604447. [Google Scholar] [CrossRef]
- Yu, I.; Ye, Y.; Moon, S.; Lee, S.K.; Joo, Y. A Bendable, Stretchable Transistor with Aligned Carbon Nanotube Films. Adv. Mater. Interfaces 2019, 6, 1900945. [Google Scholar] [CrossRef]
Solvent | Density (g/mL) | Viscosity (mPa.s) | Topological Polar Surface Area (Ų) | Dielectric Constant | Dipole Moment (Hexane 0 D) |
---|---|---|---|---|---|
Toluene | 0.87 | 0.56 | 0 | 2.376 | 0.36D |
p-xylene | 0.86 | 0.603 | 0 | 2.27 | 0.07D |
m-xylene | 0.86 | 0.581 | 0 | 2.367 | 0.32D |
o-xylene | 0.88 | 0.76 | 0 | 2.568 | 0.54D |
THF | 0.89 | 0.50 | 9.2 | 7.4 | 1.75D |
chloroform | 1.48 | 0.556 | 0 | 4.65 | 1.04D |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lei, T. Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping. Polymers 2020, 12, 1548. https://doi.org/10.3390/polym12071548
Wang J, Lei T. Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping. Polymers. 2020; 12(7):1548. https://doi.org/10.3390/polym12071548
Chicago/Turabian StyleWang, Jingyi, and Ting Lei. 2020. "Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping" Polymers 12, no. 7: 1548. https://doi.org/10.3390/polym12071548
APA StyleWang, J., & Lei, T. (2020). Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping. Polymers, 12(7), 1548. https://doi.org/10.3390/polym12071548