Using Epoxidized Solution Polymerized Styrene-Butadiene Rubbers (ESSBRs) as Coupling Agents to Modify Silica without Volatile Organic Compounds
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of Epoxidized Styrene-Butadiene Rubber (ESSBR)
2.3. Preparation of Silica/SSBR/BR Composites
2.4. Characterizations
3. Results and Discussion
3.1. Chemical Structure of the Epoxidized Styrene-Butadiene Rubber (ESSBR)
3.2. Compositions and Molecular Weights of Rubbers
3.3. Application of ESSBR in Rubber Composites
3.3.1. Payne Effect of Silica/SSBR/BR Compounds
3.3.2. TEM Images of Silica/SSBR/BR Composites
3.3.3. Bound Rubber of Silica/SSBR/BR Composites
3.3.4. Dynamic Mechanical Properties of Silica/SSBR/BR Composites
3.3.5. Curing Behavior of Silica/SSBR/BR Composites
3.3.6. Static Mechanical Properties of Silica/SSBR/BR Composites
3.3.7. Abrasion Loss Properties of Silica/SSBR/BR Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choi, S.S. Improvement of properties of silica-filled styrene-butadiene rubber compounds using acrylonitrile-butadiene rubber. J. Appl. Polym. Sci. 2001, 79, 1127–1133. [Google Scholar] [CrossRef]
- Li, Y.; Han, B.; Wen, S.; Lu, Y.; Yang, H.; Zhang, L.; Liu, L. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites. Compos. Part A Appl. Sci. Manuf. 2014, 62, 52–59. [Google Scholar] [CrossRef]
- Qiao, H.; Chao, M.; Hui, D.; Liu, J.; Zheng, J.; Lei, W.; Zhou, X.; Wang, R.; Zhang, L. Enhanced interfacial interaction and excellent performance of silica/epoxy group-functionalized styrene-butadiene rubber (SBR) nanocomposites without any coupling agent. Compos. Part B Eng. 2017, 114, 356–364. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, S.H. Study on structure and properties of SSBR/SiO2 co-coagulated rubber and SSBR filled with nanosilica composites. J. Appl. Polym. Sci. 2008, 109, 3900–3907. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, S.H.; Li, A.; Zhang, X.Y. Study on the structure and properties of SSBR with large-volume functional groups at the end of chains. Polymer 2010, 51, 2084–2090. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Kiselev, A.V.; Zhuravlev, L.T. Study of the surface and bulk hydroxyl groups of silica by infra-red spectra and D2O-exchange. Trans. Faraday Soc. 1964, 60, 2254–2264. [Google Scholar] [CrossRef]
- Legrand, A.P.; Hommel, H.; Tuel, A.P.; Vidal, A.; Balard, H.; Papirer, E.; Levitz, P.; Czernichowski, M.; Erre, R.; Van Damme, H.; et al. Hydroxyls of silica powders. Adv. Colloid Interface Sci. 1990, 33, 91–330. [Google Scholar] [CrossRef]
- Shelby, J.E. Reaction of Hydrogen with Hydroxyl-Free Vitreous Silica. J. Appl. Phys. 1980, 51, 2589–2593. [Google Scholar] [CrossRef]
- Mauri, A.N.; Riccardi, C.C.; Williams, R.J. Neat and silica-enriched polysilsesquioxanes in dispersed media. Macromol. Symp. 2000, 151, 331–340. [Google Scholar] [CrossRef]
- Wang, Y.; Du, W.; Xu, Y. Effect of Sintering Temperature on the Photocatalytic Activities and Stabilities of Hematite and Silica-Dispersed Hematite Particles for Organic Degradation in Aqueous Suspensions. Langmuir 2009, 25, 2895–2899. [Google Scholar] [CrossRef]
- Brinke, J.W.t.; Debnath, S.C.; Reuvekamp, L.A.E.M.; Noordermeer, J.W.M. Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos. Sci. Technol. 2003, 63, 1165–1174. [Google Scholar] [CrossRef]
- Brunel, D.; Cauvel, A.; Renzo, F.D.; Fajula, F.o.; Fubini, B.; Onida, B.; Garrone, E. Preferential grafting of alkoxysilane coupling agents on the hydrophobic portion of the surface of micelle-templated silica. New J. Chem. 2000, 24, 807–813. [Google Scholar] [CrossRef]
- Kaewsakul, W.; Sahakaro, K.; Dierkes, W.K.; Noordermeer, J.W.M. Mechanistic Aspects of Silane Coupling Agents with Different Functionalities on Reinforcement of Silica-Filled Natural Rubber Compounds. Polym. Eng. Sci. 2015, 55, 836–842. [Google Scholar] [CrossRef]
- Cataldo, F. Preparation of silica-based rubber compounds without the use of a silane coupling agent through the use of epoxidized natural rubber. Macromol. Mater. Eng. 2002, 287, 348–352. [Google Scholar] [CrossRef]
- Jesionowski, T.; Krysztafkiewicz, A. Influence of silane coupling agents on surface properties of precipitated silicas. Appl. Surf. Sci. 2001, 172, 18–32. [Google Scholar] [CrossRef]
- Kostiainen, R.; Kotiaho, T.; Mattila, I.; Mansikka, T.; Ojala, M.; Ketola, R.A. Analysis of Volatile Organic Compounds in Water and Soil Samples by Purge-and-Membrane Mass Spectrometry. Anal. Chem. 1998, 70, 3028–3032. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, S.M.; Kim, K.-J. Observation of Interfacial Adhesion in Silica-NR Compound by Using Bifunctional Silane Coupling Agent. Polymer-Korea 2015, 39, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Liao, X.; Chen, J.; Xiao, H.; Xu, L.; Zhang, F.; Niu, Z.; Yu, J. Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China. Environ. Sci. Pollut. Res. 2013, 20, 2603–2615. [Google Scholar] [CrossRef]
- Wang, Y.; Xiaobin, X.U.; Mao, T.; Zhang, K.P.; Yin, L.Y.; Cheng, H. Analysis of atmospheric organic compounds by thermal desorption-comprehensive two-dimensional gas chromatography-flame ionization detection. Sci. Sin. Chim. 2012, 42, 164–174. [Google Scholar] [CrossRef]
- Sengloyluan, K.; Sahakaro, K.; Dierkes, W.K.; Noordermeer, J.W.M. Reduced ethanol emissions by a combination of epdxidized natural rubber and silane coupling agent for silica-reinforced natural rubber-based tire treads. Rubber Chem. Technol. 2016, 89, 419–435. [Google Scholar] [CrossRef]
- Zheng, J.; Han, D.; Ye, X.; Wu, X.; Wu, Y.; Wang, Y.; Zhang, L. Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites. Polymer 2018, 135, 200–210. [Google Scholar] [CrossRef]
- Ogasawara, A.; Han, J.; Fukunaga, K.; Wang, J.; Wang, D.; Namihira, T.; Sasaki, M.; Akiyama, H.; Zhang, P. Decomposition of Toluene Using Nanosecond-Pulsed-Discharge Plasma Assisted with Catalysts. IEEE Trans. Plasma Sci. 2015, 43, 3461–3469. [Google Scholar] [CrossRef]
- Viegi, G.; Enarson, D.A. Human health effects of air pollution from mobile sources in Europe. Int. J. Tuberc. Lung Dis. 1998, 2, 947–967. [Google Scholar] [PubMed]
- Chakraborty, S.K.; De, S.K. Technology. Silica- and Clay-Reinforced Carboxylated Nitrile Rubber Vulcanized by a Mixed Crosslinking System. Rubber Chem. Technol. 1982, 55, 990–1003. [Google Scholar] [CrossRef]
- Takamura, M.; Yamauchi, T.; Tsubokawa, N. Grafting and crosslinking reaction of carboxyl-terminated liquid rubber with silica nanoparticles and carbon black in the presence of Sc(OTf)(3). React. Funct. Polym. 2008, 68, 1113–1118. [Google Scholar] [CrossRef]
- Perera, M.C.S.; Elix, J.A.; Bradbury, J.H. A 13C NMR study of hydroxylated natural rubber. J. Appl. Polym. Sci. 1987, 33, 2731–2742. [Google Scholar] [CrossRef]
- Min, X.; Fan, X. A New Strategy for the Synthesis of Hydroxyl Terminated Polystyrene-b-Polybutadiene-b-Polystyrene Triblock Copolymer with High Cis-1, 4 Content. Polymers 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Jie, S.; Li, B.-G. Facile synthesis of novel HTPBs and EHTPBs with high cis-1,4 content and extremely low glass transition temperature. Polymer 2015, 67, 208–215. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, A.; Dai, L.; Jie, S.; Li, B.-G. Cleavable polybutadiene rubber: A versatile precursor to hydroxyl-terminated or multi-hydroxyl polybutadiene and polyethylene. Polymer 2016, 107, 306–315. [Google Scholar] [CrossRef]
- Januszewski, R.; Kownacki, I.; Maciejewski, H.; Marciniec, B. Transition metal-catalyzed hydrosilylation of polybutadiene—The effect of substituents at silicon on efficiency of silylfunctionalization process. J. Catal. 2019, 371, 27–34. [Google Scholar] [CrossRef]
- Kim, E.; Lee, E.; Park, I.; Chang, T. End functionalization of styrene-butadiene rubber with poly(ethylene glycol)-poly(dimethylsiloxane) terminator. Polym. J. 2002, 34, 674–681. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, S.; Zhang, X.; Li, X.; Bai, Y. Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites. Polymer 2014, 55, 1964–1976. [Google Scholar] [CrossRef]
- Quirk, R.P. Anionic polymerization and chain-end functionalization chemistry. Rubber Chem. Technol. 2020, 93, 1–21. [Google Scholar] [CrossRef]
- Ahn, B.; Park, N.; Kim, D.; Kim, W. Influence of end-functionalized solution styrene-butadiene rubber on silica-filled vulcanizates with various silica-silane systems. Rubber Chem. Technol. 2019, 92, 364–377. [Google Scholar] [CrossRef]
- Jacobi, M.M.; Neto, C.P.; Schneider, C.G.; Rocha, T.; Schuster, R.H. Study of the epoxidation of polydiene rubbers I. Influence of the microstructure on the epoxidation of SBR with performic acid. Kautsch. Gummi Kunstst. 2002, 55, 590–595. [Google Scholar]
- Jacobi, M.M.; Santin, C.K.; Alegre, M.E.V.; Schuster, R.H. Study of the epoxidation of polydiene rubbers II. Kautsch. Gummi Kunstst. 2004, 57, 82–89. [Google Scholar]
- Park, J.J. Mechanical Properties of Epoxy/Micro-silica and Epoxy/Micro-alumina Composites. Trans. Electr. Electron. Mater. 2018, 19, 481–485. [Google Scholar] [CrossRef]
- Qu, L.L.; Yu, G.Z.; Xie, X.M.; Wang, L.L.; Li, J.; Zhao, Q.S. Effect of Silane Coupling Agent on Filler and Rubber Interaction of Silica Reinforced Solution Styrene Butadiene Rubber. Polym. Compos. 2013, 34, 1575–1582. [Google Scholar] [CrossRef]
- Sengloyluan, K.; Sahakaro, K.; Dierkes, W.K.; Noordermeer, J.W.M. Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber. Eur. Polym. J. 2014, 51, 69–79. [Google Scholar] [CrossRef]
- Varughese, S.; Tripathy, D.K. Chemical interaction between epoxidized natural rubber and silica: Studies on cure characteristics and low-temperature dynamic mechanical properties. J. Appl. Polym. Sci. 2003, 44, 1847–1852. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, J.; Han, B.; Zhang, L.; Lu, J.; Ye, X. Designing novel epoxy-terminated polybutadiene to construct chemical interface between nanosilica and rubbers with green nature. Compos. Part B-Eng. 2019, 178. [Google Scholar] [CrossRef]
- Lei, W.; Qiao, H.; Zhou, X.; Wang, W.; Zhang, L.; Wang, R.; Hua, K.-C. Synthesis and evaluation of bio-based elastomer based on diethyl itaconate for oil-resistance applications. Sci. China-Chem. 2016, 59, 1376–1383. [Google Scholar] [CrossRef]
- Ramier, J.; Gauthier, C.; Chazeau, L.; Stelandre, L.; Guy, L. Payne effect in silica-filled styrene-butadiene rubber: Influence of surface treatment. J. Polym. Sci. Part B-Polym. Phys. 2007, 45, 286–298. [Google Scholar] [CrossRef]
- Roychoudhury, A.; De, P.P.; Roychoudhury, N.; Vidal, A. Chemical Interaction between Chlorosulfonated Polyethylene and Silica—Effect of Surface Modifications of Silica. Rubber Chem. Technol. 1995, 68, 815–823. [Google Scholar] [CrossRef]
- Zheng, J.; Ye, X.; Han, D.; Zhao, S.; Wu, X.; Wu, Y.; Dong, D.; Wang, Y.; Zhang, L. Silica Modified by Alcohol Polyoxyethylene Ether and Silane Coupling Agent Together to Achieve High Performance Rubber Composites Using the Latex Compounding Method. Polymers 2018, 10, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugharaj, A.M.; Bhowmick, A.K. Dynamic mechanical properties of styrene-butadiene rubber vulcanizate filled with electron beam modified surface-treated dual-phase filler. J. Appl. Polym. Sci. 2003, 88, 2992–3004. [Google Scholar] [CrossRef]
- Wang, S.; Cen, L.; Wu, Q. Maleated glycidyl 3-pentadecenyl phenyl ether with styrene: Synthesis and application as compatibilizer in SBR/silica composite. Polym. Adv. Technol. 2015, 26, 953–959. [Google Scholar] [CrossRef]
- Kong, L.; Li, F.; Wang, F.; Miao, Y.; Huang, X.; Zhu, H.; Lu, Y. In situ assembly of SiO2 nanodots/layered double hydroxide nanocomposite for the reinforcement of solution-polymerized butadiene styrene rubber/butadiene rubber. Compos. Sci. Technol. 2018, 158, 9–18. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, K.; Xu, Y.; Peng, Z.; Jia, L.; Hui, D.; Zhang, L. Morphology and performance of NR/NBR/ENR ternary rubber composites. Compos. Part B-Eng. 2016, 107, 106–112. [Google Scholar] [CrossRef]
- Blanco, I.; Oliveri, L.; Cicala, G.; Recca, A. Effects of novel reactive toughening agent on thermal stability of epoxy resin. J. Therm. Anal. Calorim. 2012, 108, 685–693. [Google Scholar] [CrossRef]
- Abate, L.; Blanco, I.; Cicala, G.; Mamo, A.; Recca, G.; Scamporrino, A. The influence of chain rigidity on the thermal properties of some novel random copolyethersulfones. Polym. Degrad. Stab. 2010, 95, 798–802. [Google Scholar] [CrossRef]
A1 | A2 | B3 | C3 | D3 | E3 | F1 | F2 | F3 | |
---|---|---|---|---|---|---|---|---|---|
Materials | PS(pure silica)-SSBR/BR/phr a | TS(TESPD-silica)-SSBR/BR/phr a | E7-SSBR/BR/phr a | E10-SSBR/BR/phr a | E15-SSBR/BR/phr a | E20-SSBR/BR/phr a | E25a-SSBR/BR/phr a | E25b-SSBR/BR/phr a | E25c-SSBR/BR/phr a |
SSBR | 74 | 74 | 44.4 | 44.4 | 44.4 | 44.4 | 59.2 | 51.8 | 44.4 |
BR | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 |
Silica | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
ESSBR7% c | 0 | 0 | 29.6c | 0 | 0 | 0 | 0 | 0 | 0 |
ESSBR10% c | 0 | 0 | 0 | 29.6c | 0 | 0 | 0 | 0 | 0 |
ESSBR15% c | 0 | 0 | 0 | 0 | 29.6c | 0 | 0 | 0 | 0 |
ESSBR20% c | 0 | 0 | 0 | 0 | 0 | 29.6c | 0 | 0 | 0 |
ESSBR25% c | 0 | 0 | 0 | 0 | 0 | 0 | 14.8 | 22.2 | 29.6c |
TESPD | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Other additives | 1# b | 1# b | 1# b | 1# b | 1# b | 1# b | 1# b | 1# b | 1# b |
Sample | Composition (%) | Mn × 10−5 (Da) | Mw × 10−5 (Da) | PDI | ||
---|---|---|---|---|---|---|
Bound Styrene | 1,4-unit | 1,2-unit | ||||
SSBR2557 | 27 | 44 | 56 | 3.96 | 9.06 | 2.28 |
SSBR4526 | 26 | 55 | 45 | 1.75 | 5.4 | 3.09 |
CB24 | - | - | 1.45 | 4.05 | 2.79 | |
ESSBR7% | - | - | 4.35 | 10.11 | 2.32 | |
ESSBR10% | - | - | 4.48 | 10.53 | 2.35 | |
ESSBR15% | - | - | 4.58 | 10.68 | 2.33 | |
ESSBR20% | - | - | 4.31 | 10.42 | 2.42 | |
ESSBR25% | - | - | 4.46 | 10.71 | 2.40 |
A1 | A2 | B3 | C3 | D3 | E3 | F3 | |
---|---|---|---|---|---|---|---|
tanδ@0 °C | 0.213 | 0.433 | 0.246 | 0.324 | 0.366 | 0.467 | 0.605 |
tanδ@60 °C | 0.167 | 0.105 | 0.127 | 0.119 | 0.108 | 0.103 | 0.079 |
F1 | F2 | F3 | |
---|---|---|---|
tanδ@0 °C | 0.537 | 0.568 | 0.627 |
tanδ@60 °C | 0.096 | 0.088 | 0.083 |
T10 (min) | T90 (min) | ML (dNm) | MH (dNm) | ΔM (dNm) | Crosslink Density (10−4 mol/cm3) | |
---|---|---|---|---|---|---|
A1 | 1.5 | 53.4 | 38.9 | 56.3 | 17.4 | 1.12 |
A2 | 3.1 | 29.0 | 28.4 | 65.4 | 37 | 1.54 |
B3 | 3.7 | 53.0 | 34.6 | 66.3 | 31.7 | 1.53 |
C3 | 4.4 | 53.5 | 33.1 | 68.1 | 35 | 1.55 |
D3 | 4.8 | 51.2 | 31.7 | 65.6 | 33.9 | 1.58 |
E3 | 4.5 | 46.7 | 30.9 | 74.8 | 43.9 | 1.62 |
F1 | 6.6 | 47.3 | 31.2 | 76.1 | 44.9 | 1.59 |
F2 | 6.7 | 43.4 | 28.6 | 72.3 | 43.7 | 1.58 |
F3 | 6.2 | 44.6 | 26.7 | 69.7 | 43 | 1.61 |
Sample | Elongationat Break (%) | Modulus at 100% (MPa) | Modulus at 300% (MPa) | Tensile Stress (MPa) | Shore A Hardness |
---|---|---|---|---|---|
A1 | 437 ± 39 | 2.6 ± 0.1 | 8.2 ± 0.3 | 16.5 ± 1.4 | 64 |
A2 | 386 ± 3 | 4.8 ± 0.1 | 13.6 ± 0.3 | 21.2 ± 0.3 | 63 |
B3 | 377 ± 7 | 3.9 ± 0.2 | 13.1 ± 0.4 | 18.2 ± 2.4 | 63 |
C3 | 355 ± 11 | 4.7 ± 0.1 | 13.8 ± 0.1 | 19.7 ± 2.5 | 62 |
D3 | 336 ± 27 | 4.9 ± 0.2 | 16.5 ± 0.4 | 20.3 ± 0.8 | 61 |
E3 | 338 ± 34 | 5.8 ± 0.4 | 17.4 ± 0.7 | 21.6 ± 2.5 | 64 |
F1 | 346 ± 29 | 5.5 ± 0.4 | 16.5 ± 0.4 | 21.9 ± 2.6 | 61 |
F2 | 309 ± 16 | 6.1 ± 0.5 | 20.3 ± 0.5 | 20.6 ± 1.5 | 64 |
F3 | 317 ± 26 | 6.6 ± 0.1 | 22.6 ± 0.3 | 23.9 ± 1.2 | 65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Guo, M.; Zhai, X.; Ye, X.; Zhang, L. Using Epoxidized Solution Polymerized Styrene-Butadiene Rubbers (ESSBRs) as Coupling Agents to Modify Silica without Volatile Organic Compounds. Polymers 2020, 12, 1257. https://doi.org/10.3390/polym12061257
Liu C, Guo M, Zhai X, Ye X, Zhang L. Using Epoxidized Solution Polymerized Styrene-Butadiene Rubbers (ESSBRs) as Coupling Agents to Modify Silica without Volatile Organic Compounds. Polymers. 2020; 12(6):1257. https://doi.org/10.3390/polym12061257
Chicago/Turabian StyleLiu, Chaohao, Mingming Guo, Xiaobo Zhai, Xin Ye, and Liqun Zhang. 2020. "Using Epoxidized Solution Polymerized Styrene-Butadiene Rubbers (ESSBRs) as Coupling Agents to Modify Silica without Volatile Organic Compounds" Polymers 12, no. 6: 1257. https://doi.org/10.3390/polym12061257
APA StyleLiu, C., Guo, M., Zhai, X., Ye, X., & Zhang, L. (2020). Using Epoxidized Solution Polymerized Styrene-Butadiene Rubbers (ESSBRs) as Coupling Agents to Modify Silica without Volatile Organic Compounds. Polymers, 12(6), 1257. https://doi.org/10.3390/polym12061257