Deformation-Induced Crystallization Behavior of Isotactic Polypropylene Sheets Containing a β-Nucleating Agent under Solid-State Stretching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. Differential Scanning Calorimetry (DSC)
3.3. 2D Small-Angle X-ray Scattering (2D-SAXS)
3.4. Scanning Electron Microscopy (SEM)
3.5. Mechanical Properties
3.6. Cylindrite Structure Transformation Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krache, R.; Benavente, R.; López-Majad, J.M.; Pérez, E. Competition between α, β, and γ Polymorphs in a β-Nucleated Metallocenic Isotactic Polypropylene. Macromolecules 2007, 40, 6871–6878. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Burger, C.; Li, X.; Hsiao, B.S.; Mehta, A.K.; Tsou, A.H. Time-Resolved Synchrotron X-ray Scattering Study on Propylene–1-Butylene Random Copolymer Subjected to Uniaxial Stretching at High Temperatures. Macromolecules 2012, 45, 951–961. [Google Scholar] [CrossRef]
- Sheng, Q.; Zhang, Y.; Xia, C.; Mi, D.; Xu, X.; Wang, T.; Zhang, J. A new insight into the effect of β modification on the mechanical properties of iPP: The role of crystalline morphology. Mater. Des. 2016, 95, 247–255. [Google Scholar] [CrossRef]
- Han, L.; Li, X.; Li, Y.; Huang, T.; Wang, Y.; Wu, J.; Xiang, F. Influence of annealing on microstructure and physical properties of isotactic polypropylene/calcium carbonate composites with β-phase nucleating agent. Mater. Sci. Eng. A 2010, 527, 3176–3185. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, K.; Zhou, S.; Shi, Y.; Xin, Z. A novel self-dispersed β nucleating agent for isotactic polypropylene and its unique nucleation behavior and mechanism. Polymer 2017, 132, 69–78. [Google Scholar] [CrossRef]
- Chen, H.B.; Karger-Kocsis, J.; Wu, J.S.; Varga, J. Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 2002, 43, 6505–6514. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.; Ji, F.; Zhang, X.; Zheng, G.; Shen, C. Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer 2012, 53, 1791–1800. [Google Scholar] [CrossRef]
- Tordjeman, P.; Robert, C.; Marin, G.; Gerard, P. The effect of α, β crystalline structure on the mechanical properties of polypropylene. Eur. Phys. J. E 2001, 4, 459–465. [Google Scholar] [CrossRef]
- Byelov, D.; Panine, P.; Remerie, K.; Biemond, E.; Alfonso, G.C.; de Jeu, W.H. Crystallization under shear in isotactic polypropylene containing nucleators. Polymer 2008, 49, 3076–3083. [Google Scholar] [CrossRef]
- Zuo, F.; Keum, J.K.; Chen, X.; Hsiao, B.S.; Chen, H.; Lai, S.-Y.; Wevers, R.; Li, J. The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene. Polymer 2007, 48, 6867–6880. [Google Scholar] [CrossRef]
- Huo, H.; Jiang, S.; An, L. Influence of Shear on Crystallization Behavior of the β Phase in Isotactic Polypropylene with β-Nucleating Agent. Macromolecules 2004, 37, 2478–2483. [Google Scholar] [CrossRef]
- Xiao, W.; Wu, P.; Feng, J.; Yao, R. Influence of a novel β-nucleating agent on the structure, morphology, and nonisothermal crystallization behavior of isotactic polypropylene. J. Appl. Polym. Sci. 2009, 111, 1076–1085. [Google Scholar] [CrossRef]
- Wang, S.-W.; Yang, W.; Xu, Y.-J.; Xie, B.-H.; Yang, M.-B.; Peng, X.-F. Crystalline morphology of β-nucleated controlled-rheology polypropylene. Polym. Test. 2008, 27, 638–644. [Google Scholar] [CrossRef]
- Juhász, P.; Varga, J.; Belina, K.; Marand, H. Determination of the equilibrium melting point of the β-form of polypropylene. J. Therm. Anal. Calorim. 2002, 69, 561–574. [Google Scholar] [CrossRef]
- Varga, J.; Menyhard, A. Effect of Solubility and Nucleating Duality of N,N′-Dicyclohexyl-2,6-naphthalenedicarboxamide on the Supermolecular Structure of Isotactic Polypropylene. Macromolecules 2007, 40, 2422–2431. [Google Scholar] [CrossRef]
- Slouf, M.; Pavlova, E.; Krejcikova, S.; Ostafinska, A.; Zhigunov, A.; Krzyzanek, V.; Sowinski, P.; Piorkowska, E. Relations between morphology and micromechanical properties of alpha, beta and gamma phases of iPP. Polym. Test. 2018, 67, 522–532. [Google Scholar] [CrossRef]
- Lezak, E.; Bartczak, Z.; Galeski, A. Plastic Deformation of the γ Phase in Isotactic Polypropylene in Plane-Strain Compression. Macromolecules 2006, 39, 4811–4819. [Google Scholar] [CrossRef]
- Van Erp, T.B.; Balzano, L.; Spoelstra, A.B.; Govaert, L.E.; Peters, G.W.M. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of shear and pressure. Polymer 2012, 53, 5896–5908. [Google Scholar] [CrossRef]
- Shi, G.-Y.; Chu, F.; Zhou, G.-E.; Han, Z.-W. Plastic deformation and solid-phase transformation in β-phase polypropylene. Die Makromol. Chem. 1989, 190, 907–913. [Google Scholar] [CrossRef]
- Wu, G.-G.; Chen, W.-B.; Ding, C.; Xu, L.-Y.; Liu, Z.-Y.; Yang, W.; Yang, M.-B. Pore formation mechanism of oriented β polypropylene cast films during stretching and optimization of stretching methods: In-situ SAXS and WAXD studies. Polymer 2019, 163, 86–95. [Google Scholar] [CrossRef]
- Li, J.X.; Cheung, W.L. On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer 1998, 39, 6935–6940. [Google Scholar] [CrossRef]
- Bao, R.-Y.; Ding, Z.-T.; Liu, Z.-Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. Deformation-induced structure evolution of oriented β-polypropylene during uniaxial stretching. Polymer 2013, 54, 1259–1268. [Google Scholar] [CrossRef]
- Riekel, C.; Karger-Kocsis, J. Structural investigation of the phase transformation in the plastic zone of a β-phase isotactic polypropylene by synchrotron. Polymer 1999, 40, 541–545. [Google Scholar] [CrossRef]
- Lezak, E.; Bartczak, Z.; Galeski, A. Plastic deformation behavior of β-phase isotactic polypropylene in plane-strain compression at room temperature. Polymer 2006, 47, 8562–8574. [Google Scholar] [CrossRef]
- Boyanova, M.; Calleja, F.J.B.; Fakirov, S. New aspects of the β–α polymorphic transition in plastically deformed isotactic polypropylene studied by microindentation hardness. J. Mater. Sci. 2006, 41, 5504–5509. [Google Scholar] [CrossRef]
- Zuo, F.; Mao, Y.; Li, X.; Burger, C.; Hsiao, B.S.; Chen, H.; Marchand, G.R. Effects of Block Architecture on Structure and Mechanical Properties of Olefin Block Copolymers under Uniaxial Deformation. Macromolecules 2011, 44, 3670–3673. [Google Scholar] [CrossRef]
- Rozanski, A.; Galeski, A.; Debowska, M. Initiation of Cavitation of Polypropylene during Tensile Drawing. Macromolecules 2011, 44, 20–28. [Google Scholar] [CrossRef]
- Ji, H.; Zhou, X.; Chen, X.; Zhao, H.; Wang, Y.; Zhu, H.; Shan, X.; Sha, J.; Ma, Y.; Xie, L. Effects of Solid-State Stretching on Microstructure Evolution and Physical Properties of Isotactic Polypropylene Sheets. Polymers 2019, 11, 618. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-H.; Fang, D.-F.; Lei, J.; Li, L.-B.; Hsiao, B.S.; Li, Z.-M. Shear-Induced Precursor Relaxation-Dependent Growth Dynamics and Lamellar Orientation of β-Crystals in β-Nucleated Isotactic Polypropylene. J. Phys. Chem. B 2015, 119, 5716–5727. [Google Scholar] [CrossRef]
- Varga, J. β-modification of isotactic polypropylene: Preparation, structure, processing, properties, and application. J. Macromol. Sci. Phys. 2002, 41, 1121–1171. [Google Scholar] [CrossRef]
- Matyi, R.J.; Crist, B., Jr. Small-angle x-ray scattering by nylon 6. J. Polym. Sci. Polym. Phys. Ed. 1978, 16, 1329–1354. [Google Scholar] [CrossRef]
- Jiang, Z.; Tang, Y.; Rieger, J.; Enderle, H.-F.; Lilge, D.; Roth, S.V.; Gehrke, R.; Heckmann, W.; Men, Y. Two Lamellar to Fibrillar Transitions in the Tensile Deformation of High-Density Polyethylene. Macromolecules 2010, 43, 4727–4732. [Google Scholar] [CrossRef]
- Olley, R.H.; Bassett, D.C. An improved permanganic etchant for polyolefines. Polymer 1982, 23, 1707–1710. [Google Scholar] [CrossRef]
- Niu, H.; Wang, N.; Li, Y. Influence of β-nucleating agent dispersion on the crystallization behavior of isotactic polypropylene. Polymer 2018, 150, 371–379. [Google Scholar] [CrossRef]
- Han, R.; Nie, M.; Wang, Q.; Yan, S. Self-Assembly β Nucleating Agent Induced Polymorphic Transition from α-Form Shish Kebab to β-Form Highly Ordered Lamella under Intense Shear Field. Ind. Eng. Chem. Res. 2017, 56, 2764–2772. [Google Scholar] [CrossRef]
- Hobeika, S.; Men, Y.; Strobl, G. Temperature and Strain Rate Independence of Critical Strains in Polyethylene and Poly(ethylene-co-vinyl acetate). Macromolecules 2000, 33, 1827–1833. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Chen, R.; Men, Y. Crystallization and melting of isotactic polypropylene crystallized from quiescent melt and stress-induced localized melt. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 957–963. [Google Scholar] [CrossRef]
- Mao, Y.; Li, X.; Burger, C.; Hsiao, B.S.; Mehta, A.K.; Tsou, A.H. Structure Development during Stretching and Heating of Isotactic Propylene–1-Butylene Random Copolymer: From Unit Cells to Lamellae. Macromolecules 2012, 45, 7061–7071. [Google Scholar] [CrossRef]
- Li, X.; Wu, H.; Huang, T.; Shi, Y.; Wang, Y.; Xiang, F.; Zhou, Z. β/α Transformation of β-polypropylene during tensile deformation: Effect of crystalline morphology. Colloid Polym. Sci. 2010, 288, 1539–1549. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, H.; Hong, Z.; Wei, Y.; Zhou, C. Modeling of flow-induced crystallization in blends of isotactic polypropylene and poly(ethylene-co-octene). Polym. Int. 2012, 61, 1389–1393. [Google Scholar] [CrossRef]
- Coppola, S.; Grizzuti, N. Microrheological Modeling of Flow-Induced Crystallization. Macromolecules 2001, 34, 5030–5036. [Google Scholar] [CrossRef]
- Wu, T.; Xiang, M.; Cao, Y.; Kang, J.; Yang, F. Influence of lamellar structure on the stress–strain behavior of β nucleated polypropylene under tensile loading at elevated temperatures. RSC Adv. 2015, 5, 43496–43507. [Google Scholar] [CrossRef]
- Mi, D.; Hong, L.; Lei, Z.; Tao, W.; Zhang, X.; Jie, Z. The Changes of Microstructure and Physical Properties of Isotactic Polypropylene/β Nucleation Agent/Polyolefin Elastomer Induced by Annealing Following Processing. J. Macromol. Sci. Part B 2015, 54, 1376–1390. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, D.; Hsiao, B.S.; Li, Z. Insight into unique deformation behavior of oriented isotactic polypropylene with branched shish-kebabs. Polymer 2015, 60, 274–283. [Google Scholar] [CrossRef]
- Michler, G.H.; Balta, F.J. Mechanical Properties of Polymers Based on Nanostructure and Morphology; Taylor & Francis Group: 2&4 Park Square, Milton Park, Abingdon, UK, 2005; pp. 280–290. [Google Scholar]
- Young, R.J.; Lovell, P.A. Introduction to Polymers, 3rd ed.; Taylor & Francis Group: 2&4 Park Square, Milton Park, Abingdon, UK, 2011; pp. 548–551. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Zhou, X.; Chen, X.; Zhao, H.; Wang, Y.; Zhu, H.; Ma, Y.; Xie, L. Deformation-Induced Crystallization Behavior of Isotactic Polypropylene Sheets Containing a β-Nucleating Agent under Solid-State Stretching. Polymers 2020, 12, 1258. https://doi.org/10.3390/polym12061258
Ji H, Zhou X, Chen X, Zhao H, Wang Y, Zhu H, Ma Y, Xie L. Deformation-Induced Crystallization Behavior of Isotactic Polypropylene Sheets Containing a β-Nucleating Agent under Solid-State Stretching. Polymers. 2020; 12(6):1258. https://doi.org/10.3390/polym12061258
Chicago/Turabian StyleJi, Huajian, Xulin Zhou, Xin Chen, Haili Zhao, Yu Wang, Huihao Zhu, Yulu Ma, and Linsheng Xie. 2020. "Deformation-Induced Crystallization Behavior of Isotactic Polypropylene Sheets Containing a β-Nucleating Agent under Solid-State Stretching" Polymers 12, no. 6: 1258. https://doi.org/10.3390/polym12061258
APA StyleJi, H., Zhou, X., Chen, X., Zhao, H., Wang, Y., Zhu, H., Ma, Y., & Xie, L. (2020). Deformation-Induced Crystallization Behavior of Isotactic Polypropylene Sheets Containing a β-Nucleating Agent under Solid-State Stretching. Polymers, 12(6), 1258. https://doi.org/10.3390/polym12061258