Formation and Electrochemical Evaluation of Polyaniline and Polypyrrole Nanocomposites Based on Glucose Oxidase and Gold Nanostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzyme-Assisted Formation and Separation of PANI/AuNPs(6nm)-GOx, PANI/AuNPs(AuCl4−)-GOx, Ppy/AuNPs(6nm)-GOx and Ppy/AuNPs(AuCl4−)-GOx Nanocomposites
2.3. The Preparation of Graphite Rod (GR) Electrode Modified by PANI/AuNPs(6nm)-GOx, PANI/AuNPs(AuCl4−)-GOx, Ppy/AuNPs(6nm)-GOx and Ppy/AuNPs(AuCl4−)-GOx Nanocomposites for Electrochemical Investigations
2.4. Characterization of PANI/AuNPs(AuCl4−)-GOx and Ppy/AuNPs(AuCl4−)-GOx Nanocomposites
2.5. Electrochemical Measurements Using GR Electrode Modified by PNC and Calculations
2.6. The Application of GR/Ppy/AuNPs(AuCl4−)-GOx Electrode for the Determination of Glucose in Human Serum
3. Results and Discussion
3.1. Characteristics of Cyclic Voltammograms Registered Using GR/PANI/AuNPs(6nm)-GOx, GR/PANI/AuNPs(AuCl4−)-GOx, GR/Ppy/AuNPs(6nm)-GOx and GR/Ppy/AuNPs(AuCl4−)-GOx Electrodes
3.2. The Influence of Scan Rate on Red-ox Peaks of GR/PANI/AuNPs(6nm)-GOx, GR/PANI/AuNPs(AuCl4−)-GOx, GR/Ppy/AuNPs(6nm)-GOx and GR/Ppy/AuNPs(AuCl4−)-GOx Electrodes
3.3. The Influence of the Duration of Enzymatic Polymerization on Cyclic Voltammogram Red-ox Peak Current Registered by GR/PANI/AuNPs(6nm)-GOx, GR/PANI/AuNPs(AuCl4−)-GOx, GR/Ppy/AuNPs(6nm)-GOx and GR/Ppy/AuNPs(AuCl4−)-GOx Electrodes
3.4. The Electrochemical Characterization of PANI/AuNPs(6nm)-GOx, PANI/AuNPs(AuCl4−)-GOx, Ppy/AuNPs(6nm)-GOx and Ppy/AuNPs(AuCl4−)-GOx Nanocomposites
3.5. The Evaluation of the Stability and Analytical Characteristics of GR Electrodes Modified by PNC
3.6. The Application of the Developed Glucose Biosensor Based on GR Electrode Modified by Ppy/AuNPs(AuCl4−)-GOx Nanocomposites for Glucose Determination in the Sample of Human Serum
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Du, D.; Zhu, C.; Yang, G.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2014, 87, 230–249. [Google Scholar] [CrossRef]
- Bo, X.; Zhou, M.; Guo, L. Electrochemical sensors and biosensors based on less aggregated graphene. Biosens. Bioelectron. 2017, 89, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Electrochemical glucose biosensors. Electrochem. Sens. Biosens. Biomed. Appl. 2008, 57–69. [Google Scholar] [CrossRef]
- Soomro, R.A.; Akyuz, O.P.; Ozturk, R.; Ibupoto, Z.H. Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material. Sens. Actuat. B Chem. 2016, 233, 230–236. [Google Scholar] [CrossRef]
- Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and analysis. Food Chem. 2015, 188, 149–160. [Google Scholar] [CrossRef]
- Babadi, A.A.; Bagheri, S.; Hamid, S.B.A. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosens. Bioelectron. 2016, 79, 850–860. [Google Scholar] [CrossRef]
- Wang, H.C.; Lee, A.R. Recent developments in blood glucose sensors. J. Food Drug Anal. 2015, 23, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- du Toit, H.; Di Lorenzo, M. Continuous power generation from glucose with two different miniature flow-through enzymatic biofuel cells. Biosens. Bioelectron. 2015, 69, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Vilian, A.T.E.; Chen, S.M. Direct electrochemistry and electrocatalysis of glucose oxidase based poly(L-arginine)-multi-walled carbon nanotubes. RSC Adv. 2014, 4, 50771–50781. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Ramanaviciene, A. Hemoproteins in design of biofuel cells. Fuel Cells 2009, 9, 25–36. [Google Scholar] [CrossRef]
- Kisieliute, A.; Popov, A.; Apetrei, M.; Carac, G.; Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Ramanavicius, A. Towards Microbial Biofuel Cells: Improvement of Charge Transfer by Self-Modification of Microoganisms with Conducting Polymer Polypyrrole. Chem. Eng. J. 2018, 356, 1014–1021. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Kausaite-Minkstimiene, A.; Morkvenaite-Vilkonciene, I.; Genys, P.; Mikhailova, R.; Semashko, T.; Voronovic, J.; Ramanaviciene, A. Biofuel Cell Based on Glucose Oxidase from Penicillium Funiculosum 46.1 and Horseradish Peroxidase. Chem. Eng. J. 2015, 264, 165–173. [Google Scholar] [CrossRef]
- Ferri, S.; Kojima, K.; Sode, K. Review of glucose oxidases and glucose dehydrogenases: A bird’s eye view of glucose sensing enzymes. J. Diabetes Sci. Technol. 2011, 5, 1068–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilian, A.T.E.; Chen, S.M.; Ali, M.A.; Al-Hemaid, F.M.A. Direct electrochemistry of glucose oxidase immobilized on ZrO2 nanoparticles-decorated reduced graphene oxide sheets for a glucose biosensor. RSC Adv. 2014, 4, 30358–30367. [Google Scholar] [CrossRef]
- Semenova, D.; Zubov, A.; Silina, Y.E.; Micheli, L.; Koch, M.; Fernandes, A.C.; Gernaey, K.V. Mechanistic modeling of cyclic voltammetry: A helpful tool for understanding biosensor principles and supporting design optimization. Sens. Actuat. B Chem. 2018, 259, 945–955. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Wang, F.; Chen, Z. Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens. Actuators B Chem. 2009, 138, 539–544. [Google Scholar] [CrossRef]
- Khalil, I.; Julkapli, N.M.; Yehye, W.A.; Basirun, W.J.; Bhargava, S.K. Graphene-gold nanoparticles hybrid-synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials 2016, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, X. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor. Electrochim. Acta 2013, 112, 774–782. [Google Scholar] [CrossRef]
- Luckarift, H.R.; Ivnitski, D.; Rincón, R.; Atanassov, P.; Johnson, G.R. Glucose oxidase catalyzed self-assembly of bioelectroactive gold nanostructures. Electroanalysis 2010, 22, 784–792. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Javaid, R. A Review on Metal Nanostructures: Preparation Methods and Their Potential Applications. Adv. Nanopart. 2016, 5, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Song, Y.; Sun, N.; Zhao, N.; Li, M.; Qi, L. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chem. Mater. 2008, 20, 3965–3972. [Google Scholar] [CrossRef]
- Heli, H.; Amirizadeh, O. Non-enzymatic glucose biosensor based on hyperbranched pine-like gold nanostructure. Mater. Sci. Eng. C 2016, 63, 150–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozalev, A.; Hubalek, J. On-substrate porous-anodic-alumina-assisted gold nanostructure arrays: Meeting the challenges of various sizes and interfaces. Electrochim. Acta 2019, 297, 988–999. [Google Scholar] [CrossRef]
- German, N.; Ramanavicius, A.; Ramanaviciene, A. Amperometric Glucose Biosensor Based on Electrochemically Deposited Gold Nanoparticles Covered by Polypyrrole. Electroanalysis 2017, 29. [Google Scholar] [CrossRef]
- German, N.; Ramanavicius, A.; Voronovic, J.; Ramanaviciene, A. Glucose biosensor based on glucose oxidase and gold nanoparticles of different sizes covered by polypyrrole layer. Colloids Surf. A Physicochem. Eng. Asp. 2012, 413. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Miao, Z.; Ma, M.; Du, X.; Lin, J.; Han, B.; Takahashi, S.; Anzai, J.I.; Chen, Q. Dual-function amperometric sensors based on poly(diallydimethylammoniun chloride)-functionalized reduced graphene oxide/manganese dioxide/gold nanoparticles nanocomposite. Sens. Actuators B Chem. 2016, 222, 663–673. [Google Scholar] [CrossRef]
- Xu, Q.; Gu, S.X.; Jin, L.; Zhou, Y.E.; Yang, Z.; Wang, W.; Hu, X. Graphene/polyaniline/gold nanoparticles nanocomposite for the direct electron transfer of glucose oxidase and glucose biosensing. Sens. Actuators B Chem. 2014, 190, 562–569. [Google Scholar] [CrossRef]
- Shanmugam, M.; Kim, K. Electrodeposited gold dendrites at reduced graphene oxide as an electrocatalyst for nitrite and glucose oxidation. J. Electr. Chem. 2016, 776, 82–92. [Google Scholar] [CrossRef]
- Jasuja, K.; Berry, V. Implantation and Growth of Dendritic Gold Nanostructures on Graphene and Raman Enhancement. ACS Nano 2009, 3, 2358–2366. [Google Scholar] [CrossRef]
- Taheri, R.A.; Eskandari, K.; Negahdary, M. An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure. Microchem. J. 2018, 143, 243–251. [Google Scholar] [CrossRef]
- Novotna, Z.; Reznickova, A.; Viererblova, L.; Kolafa, J.; Kolska, Z.; Riha, J.; Svorcik, V. Physicochemical Properties of Gold Nanostructures Deposited on Glass. J. Nanomater. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xu, J.; Feng, C.; Yan, Y. Ultrathin alumina membranes for the fabrication of blackberry-like gold nanostructure arrays. J. Mater. Sci. 2018, 53, 16122–16131. [Google Scholar] [CrossRef]
- Liu, S.; Leech, D.; Ju, H. Application of colloidal gold in protein immobilization, electron transfer, and biosensing. Anal. Lett. 2003, 36, 1–19. [Google Scholar] [CrossRef]
- Liu, Y.B.; Zhai, T.T.; Liang, Y.Y.; Wang, Y.B.; Xia, X.H. Gold core-satellite nanostructure linked by oligonucleotides for detection of glutathione with LSPR scattering spectrum. Talanta 2019, 193, 123–127. [Google Scholar] [CrossRef]
- Abraham, S.; König, M.; Srivastava, S.K.; Kumar, V.; Walkenfort, B.; Srivastava, A. Carbon nanostructure (0–3 dimensional) supported isolated gold nanoparticles as an effective SERS substrate. Sens. Actuat. B Chem. 2018, 273, 455–465. [Google Scholar] [CrossRef]
- German, N.; Popov, A.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of enzymatic formation of polyaniline nanoparticles. Polymer 2017, 115. [Google Scholar] [CrossRef]
- Cysewska, K.; Virtanen, S.; Jasiński, P. Electrochemical Activity and Electrical Properties of Optimized Polypyrrole Coatings on Iron. J. Electrochem. Soc. 2015, 162, E307–E313. [Google Scholar] [CrossRef]
- Le, T.H.; Kim, Y.; Yoon, H. Electrical and electrochemical properties of conducting polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef]
- Ilčíková, M.; Filip, J.; Mrlík, M.; Plachỳ, T.; Tkáč, J.; Kasák, P. Polypyrrole nanotubes decorated with gold particles applied for construction of enzymatic bioanodes and biocathodes. Int. J. Electrochem. Sci. 2015, 10, 6558–6571. [Google Scholar]
- Bruzaite, I.; Rozene, J.; Morkvenaite-Vilkonciene, I.; Ramanavicius, A. Towards microorganism-based biofuel cells: The viability of saccharomyces cerevisiae modified by multiwalled carbon nanotubes†. Nanomaterials 2020, 10, 954. [Google Scholar] [CrossRef] [PubMed]
- Zotti, G.; Vercelli, B.; Berlin, A. Gold nanoparticle linking to polypyrrole and polythiophene: Monolayers and multilayers. Chem. Mater. 2008, 20, 6509–6516. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Han, D.; Shen, Y.; Wang, Z.; Yuan, J.; Zhang, Q.; Niu, L. One-step synthesis of 3D dendritic gold/polypyrrole nanocomposites via a self-assembly method. Nanotechnology 2006, 17, 283–288. [Google Scholar] [CrossRef]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Formation of Polyaniline and Polypyrrole Nanocomposites with Embedded Glucose Oxidase and Gold Nanoparticles. Polymers 2019, 11, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- German, N.; Kausaite-Minkstimiene, A.; Ramanavicius, A.; Semashko, T.; Mikhailova, R.; Ramanaviciene, A. The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole. Electrochim. Acta 2015, 169. [Google Scholar] [CrossRef]
- Samukaite-Bubniene, U.; Valiūnienė, A.; Bucinskas, V.; Genys, P.; Ratautaite, V.; Ramanaviciene, A.; Aksun, E.; Tereshchenko, A.; Zeybek, B.; Ramanavicius, A. Towards supercapacitors: Cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode. Colloids Surf. A Physicochem. Eng. Asp. 2020. [Google Scholar] [CrossRef]
- Brownson, D.A.C.C.; Banks, C.E. The Handbook of Graphene Electrochemistry; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 144717173X 9781447171737. [Google Scholar]
- Wu, J.; Wang, L.; Wang, Q.; Zou, L.; Ye, B. The novel voltammetric method for determination of hesperetin based on a sensitive electrochemical sensor. Talanta 2016, 150, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K.J.; Samuelson, L. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc. 1999, 121, 71–78. [Google Scholar] [CrossRef]
- Ramanavicius, N.G.; Popov, A.; Ramanaviciene, A.; Ramanavicius, A. Formation and Electrochemical Characterisation of Enzyme-Assisted Formation of Polypyrrole and Polyaniline Nanocomposites with Embedded Glucose Oxidase and Gold Nanoparticles. J. Electrochem. Soc. 2020, 167, 165501. [Google Scholar]
- Ramanaviciene, A.; Nastajute, G.; Snitka, V.; Kausaite, A.; German, N.; Barauskas-Memenas, D.; Ramanavicius, A. Spectrophotometric evaluation of gold nanoparticles as red-ox mediator for glucose oxidase. Sens. Actuat. B Chem. 2009, 137, 483–489. [Google Scholar] [CrossRef]
- German, N.; Popov, A.; Ramanaviciene, A. Enzymatic Formation of Polyaniline, Polypyrrole, and Polythiophene Nanoparticles with Embedded Glucose Oxidase. Nanomaterials 2019, 9, 806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Silva, R.; Arizmendi, L.; Del-Angel, M.; Romero-Garcia, J. pH- and thermosensitive polyaniline colloidal particles prepared by enzymatic polymerization. Langmuir 2007, 23, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Köleli, F.; Düdükcü, M.; Arslan, Y. Synthetic metal alloys: Preparation of polyaniline/polypyrrole alloys in protic medium. Turkish J. Chem. 2000, 24, 333–341. [Google Scholar]
- Rong, L.Q.; Yang, C.; Qian, Q.Y.; Xia, X.H. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 2007, 72, 819–824. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.Y.; Yang, C.; Xia, X.H. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 2007, 9, 981–988. [Google Scholar] [CrossRef]
- Koch, P.; Sidloi, M.; Tonks, D.B. Estimation of serum ascorbic acid in patients and the effect of ascorbic acid and its oxidation products on SMA 12/60 parameters. Clin. Biochem. 1980, 13, 73–77. [Google Scholar] [CrossRef]
The Kind of Polymer Nanocomposites on GR | Epa, V | Epc, V | ΔEpa, V | ΔEpc, V |
---|---|---|---|---|
PANI/AuNPs(6nm)-GOx | −0.002–(0.23) | −0.090–(−0.48) | 0.23 | −0.39 |
PANI/AuNPs(AuCl4−)-GOx | +0.096–(0.26) | −0.031–(−0.47) | 0.16 | −0.44 |
Ppy/AuNPs(6nm)-GOx | −0.009–(0.24) | −0.10–(−0.44) | 0.25 | −0.34 |
Ppy/AuNPs(AuCl4−)-GOx | −0.007–(0.21) | −0.019–(−0.42) | 0.22 | −0.40 |
Added Concentration, mmol L−1 | Detected Concentration, mmol L−1 | Recovery, % | Number of Measurements |
---|---|---|---|
0.25 | 0.234 | 93.6 | 4 |
0.30 | 0.280 | 93.3 | 3 |
0.33 | 0.306 | 92.7 | 3 |
0.46 | 0.436 | 94.8 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
German, N.; Ramanaviciene, A.; Ramanavicius, A. Formation and Electrochemical Evaluation of Polyaniline and Polypyrrole Nanocomposites Based on Glucose Oxidase and Gold Nanostructures. Polymers 2020, 12, 3026. https://doi.org/10.3390/polym12123026
German N, Ramanaviciene A, Ramanavicius A. Formation and Electrochemical Evaluation of Polyaniline and Polypyrrole Nanocomposites Based on Glucose Oxidase and Gold Nanostructures. Polymers. 2020; 12(12):3026. https://doi.org/10.3390/polym12123026
Chicago/Turabian StyleGerman, Natalija, Almira Ramanaviciene, and Arunas Ramanavicius. 2020. "Formation and Electrochemical Evaluation of Polyaniline and Polypyrrole Nanocomposites Based on Glucose Oxidase and Gold Nanostructures" Polymers 12, no. 12: 3026. https://doi.org/10.3390/polym12123026
APA StyleGerman, N., Ramanaviciene, A., & Ramanavicius, A. (2020). Formation and Electrochemical Evaluation of Polyaniline and Polypyrrole Nanocomposites Based on Glucose Oxidase and Gold Nanostructures. Polymers, 12(12), 3026. https://doi.org/10.3390/polym12123026