Carbon, Glass and Basalt Fiber Reinforced Polybenzoxazine: The Effects of Fiber Reinforcement on Mechanical, Fire, Smoke and Toxicity Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. 1-Step Vacuum Infusion FRP Manufacturing
2.2.2. Material Characterization
3. Results and Discussion
3.1. Mechanical Properties
3.1.1. Quasi-Static Mechanical Properties
3.1.2. Fatigue Mechanical Properties
3.2. Thermal and Thermal-Oxidative Decomposition Properties
3.3. Reaction-to-to Fire Properties
3.3.1. Flammability, Heat Release Properties and Spread of Flame
3.3.2. Smoke and Toxicity Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Material-ID | No. of Plies | Thickness (mm) | FVC (vol%) | Density (g/cm3) |
---|---|---|---|---|
CFRP | 20 | 4.08 ± 0.07 | 59.9 ± 0.3 | 1.5 |
BFRP | 15 | 3.89 ± 0.05 | 56.7 ± 0.3 | 1.9 |
GFRP | 14 | 4.21 ± 0.03 | 53.8 ± 0.6 | 1.9 |
Material | Young´s Modulus (GPa) | Tensile Strength (MPa) | Elongation at Failure (%) | Flexural Modulus (GPa) | Flexural Strength (MPa) | Elongation at Failure (%) |
---|---|---|---|---|---|---|
CFRP | 59 ± 2.3 | 788 ± 29 | 1.3 ± 0 | 47 ± 0.8 | 825 ± 32 | 1.9 ± 0.1 |
BFRP | 32 ± 0.7 | 685 ± 28 | 2.6 ± 0.2 | 26 ± 0.8 | 666 ± 12 | 2.8 ± 0.1 |
GFRP 1 | 25 ± 0.7 | 411 ± 26 1 | 2.1 ± 0.1 | 23 ± 0.3 | 687 ± 12 | 3.1 ± 0.1 |
Material-ID | R | k | So | n | rsq |
---|---|---|---|---|---|
BFRP | −1.0 | 8.08 | 638.2 | 4 | 0.96 |
BFRP | 0.1 | 8.96 | 277.7 | 7 | 0.94 |
BFRP | 0.5 | 8.17 | 197.4 | 12 | 0.95 |
GFRP | −1.0 | 6.28 | 831.6 | 10 | 0.98 |
GFRP | 0.1 | 6.96 | 374.1 | 8 | 0.95 |
GFRP | 0.5 | 7.40 | 225.5 | 8 | 0.98 |
Material-ID | T2wt% (°C) | T10wt% (°C) | Char Yield (wt%) |
---|---|---|---|
PBF-a | 283 | 374 | 43 |
GFRP | 328 | 474 | 84 |
BFRP | 324 | 471 | 84 |
CFRP | 283 | 429 | 79 |
Material-ID | T2wt% (°C) | T10wt% (°C) | Char Yield (wt%) |
---|---|---|---|
PBF-a | 265 | 380 | 0 |
GFRP | 359 | 496 | 71 |
BFRP | 355 | 501 | 70 |
CFRP | 262 | 467 | 27 |
Material | TTI (s) | PHRR (kW/m2) | THR (MJ/m2) | MARHE (kW/m2) |
---|---|---|---|---|
PBF-a | 39 ± 1 | 353 ± 34 | 110 ± 1.1 | 200 ± 5.1 |
CFRP | 78 ± 1 | 196 ± 9 | 34.9 ± 0.1 | 94.6 ± 1.7 |
BFRP | 83 ± 47 | 132 ± 22 | 28.7 ± 2.7 | 49.7 ± 13.1 |
GFRP | 59 ± 6 | 121 ± 20 | 33.4 ± 2.2 | 58.4 ± 2.3 |
Material | Ignition Time (s) | DS,max (/) | DS(4) (/) | VOF4 (/) | ||
---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | ||||
PBF-a | 550 | 550 | / | 702 ± 11 | 353 ± 13 | 598 ± 26 |
CFRP | 192 | 164 | / | 430 ± 37 | 268 ± 20 | 287 ± 34 |
BFRP | 170 | No ignition | 150 | 299 ± 52 | 224 ± 74 | 280 ± 117 |
GFRP | No ignition | No ignition | No ignition | 342 ± 57 | 147 ± 51 | 150 ± 63 |
Material | CITG (/) | Detected Gas Species | Amount of Gas Specie (ppm) | ||
---|---|---|---|---|---|
4 min | 8 min | 4 min | 8 min | ||
CFRP | 0.08 ± 0.035 | 0.26 ± 0.010 | CO2 | 3276 ± 1218 | 11842 ± 297 |
CO | 105 ± 23 | 333 ± 12 | |||
HCN | 7 ± 1.5 | 16 ± 1 | |||
NOX | 30 ± 13 | 96 ± 2.5 | |||
BFRP | 0.07 ± 0.063 | 0.20 ± 0.129 | CO2 | 2656 ± 2539 | 6614 ± 5752 |
CO | 132 ± 32 | 435 ± 119 | |||
HCN | 7 ± 2 | 21 ± 14 | |||
NOX | 41 ± 6 | 93 ± 5 | |||
GFRP | 0.01 ± 0.007 | 0.06 ± 0.011 | CO2 | 115 ± 55 | 364 ± 51 |
CO | 107 ± 54 | 495 ± 46 | |||
HCN | 7 ± 0 | 27 ± 6 | |||
PBF-a | 0.02 ± 0.00 | 0.14 ± 0.01 | CO2 | 187 ± 1.4 | 574 ± 8.5 |
CO | 338 ± 5.7 | 1194 ± 40 | |||
HCN | 14.3 ± 0.7 | 57 ± 1.8 |
References
- Sapuan, S.M. Composite Materials. In Composite Materials: Concurrent Engineering Approach; Sapuan, S.M., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 57–93. [Google Scholar]
- Feistauer, E.E.; Santos, J.F.; Amancio-Filho, S.T. A review on direct assembly of through-the-thickness reinforced metal–polymer composite hybrid structures. Polym. Eng. Sci. 2019, 59, 661–674. [Google Scholar] [CrossRef] [Green Version]
- Ghanta, T.S.; Aparna, S.S.; Verma, N.; Purnima, D. Review on nano-and microfiller-based polyamide 6 hybrid composite: Effect on mechanical properties and morphology. Polym. Eng. Sci. 2020, 60, 1717–1759. [Google Scholar] [CrossRef]
- Silvergleit, M.; Morris, J.G.; Larosa, C.N. Flammability characteristics of fibre reinforced organic matrix composites. Polym. Eng. Sci. 1978, 18, 97–106. [Google Scholar] [CrossRef]
- Kandola, B.K.; Horrocks, A.R. Chapter 5: Composites. In Fire Retardant Materials; Horrocks, A.R., Price, D., Eds.; CRC Press: Boca Raton, FL, USA; Woodhead: Cambridge, UK, 2009; pp. 182–203. [Google Scholar]
- Hertzberg, T. Dangers relating to fires in carbon-fibre based composite material. Fire Mater. 2005, 29, 231–248. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Tang, Y.; Zhou, Y.; Lin, Y.; Liu, Z.; Kong, J.; Liu, T.; Gu, J. Fluorine/adamantane modified cyanate resins with wonderful interfacial bonding strength with PBO fibres. Compos. Part B Eng. 2020, 186, 107827. [Google Scholar] [CrossRef]
- Tang, L.; Dang, J.; He, M.; Li, J.; Kong, J.; Tang, Y.; Gu, J. Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos. Sci. Technol. 2019, 169, 120–126. [Google Scholar] [CrossRef]
- Tang, L.; He, M.; Na, X.; Guan, X.; Zhang, R.; Zhang, J.; Gu, J. Functionalized glass fibres cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun. 2019, 16, 5–10. [Google Scholar] [CrossRef]
- Liu, Q.; Shaw, M.T.; Parnas, R.S.; McDonnell, A.-M. Investigation of basalt fibre composite mechanical properties for applications in transportation. Polym. Compos. 2006, 27, 41–48. [Google Scholar] [CrossRef]
- Schürmann, H. Werkstoffkunde der Faser-Kunststoff-Verbunde. In Konstruieren mit Faser-Kunststoff-Verbunden; Springer: Berlin/Heidelberg, Germany, 2007; pp. 19–80. [Google Scholar]
- Gibson, A.G.; Mouritz, A.P. Thermal Decomposition of Composites in Fire. In Fire Properties of Polymer Composite Materials; Mouritz, A.P., Gibson, A.G., Eds.; Springer: Dordrecht, The Netherland, 2010; pp. 19–58. [Google Scholar]
- Gibson, A.G.; Mouritz, A.P. Health Hazards of Composites in Fire. In Fire Properties of Polymer Composite Materials; Mouritz, A.P., Gibson, A.G., Eds.; Springer: Dordrecht, The Netherland, 2010; pp. 359–384. [Google Scholar]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fibre reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Novitskii, A.G. High-Temperature Heat-Insulating Materials Based on Fibers from Basalt-Type Rock Materials. Refract. Ind. Ceram. 2004, 45, 144–146. [Google Scholar] [CrossRef]
- Hao, L.C.; Yu, W.D. Evaluation of thermal protective performance of basalt fibre nonwoven fabrics. J. Therm. Anal. Calorim. 2010, 100, 551–555. [Google Scholar] [CrossRef]
- Hao, L.; Yu, W. Comparison of thermal protective performance of aluminized fabrics of basalt fibre and glass fibre. Fire Mater. 2011, 35, 553–560. [Google Scholar] [CrossRef]
- Sawaryn, C.; Kreiling, S.; Schönfeld, R.; Landfester, K.; Taden, A. Benzoxazines for Industrial Applications Comparison with Other Resins, Formulation and Toughening Know-How, and Water-Based Dispersion Technology. In Handbook of Benzoxazine Resins; Ishida, H., Agag, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 605–620. [Google Scholar]
- Agag, T.; Geiger, S.; Ishida, H. Thermal Properties Enhancement of Polybenzoxazines. In Handbook of Benzoxazine Resins; Elsevier: New York, NY, USA, 2011; pp. 263–286. [Google Scholar]
- Kourtides, D.A.; Gilwee, W.J.; Parker, J.A. Thermal response of composite panels. Polym. Eng. Sci. 1979, 19, 226–231. [Google Scholar] [CrossRef]
- Comer, A.; Ray, D.; Obande, W.; Clancy, G.; Rosca, I.; Stanley, W. Out-of-Autoclave manufacturing of benzoxazine resin-systems by liquid-resin-infusion for ambient and high temperature aerospace application: Conference Paper. In Proceedings of the 35th International Technical Conference & Forum; SAMPE, Paris, France, 10–11 March 2014. [Google Scholar]
- Jang, J.; Yang, H. Toughness improvement of carbon-fibre/polybenzoxazine composites by rubber modification. Compos. Sci. Technol. 2000, 60, 457–463. [Google Scholar] [CrossRef]
- Kiskan, B.; Ghosh, N.N.; Yagci, Y. Polybenzoxazine-based composites as high-performance materials. Polym. Int. 2011, 60, 167–177. [Google Scholar] [CrossRef]
- Shen, S.B.; Ishida, H. Development and characterization of high-performance polybenzoxazine composites. Polym. Compos. 1996, 17, 710–719. [Google Scholar] [CrossRef]
- Ishida, H.; Chaisuwan, T. Mechanical property improvement of carbon fibre reinforced polybenzoxazine by rubber interlayer. Polym. Compos. 2003, 24, 597–607. [Google Scholar] [CrossRef]
- Dillon, F.; Thomas, K.M.; Marsh, H. The influence of matrix microstructure on the mechanical properties of CFRC composites. Carbon 1993, 31, 1337–1348. [Google Scholar] [CrossRef]
- Kimura, H.; Matsumoto, A.; Ohtsuka, K. Glass fibre-reinforced composite based on benzoxazine resin. J. Appl. Polym. Sci. 2009, 114, 1256–1263. [Google Scholar] [CrossRef]
- Ling, H.; Gu, Y.; Xie, M. A New F-grade insulating glass cloth laminate based on benzoxazine. Insul. Mater. 2001, 20–23. [Google Scholar]
- Xie, M.L.; Gu, Y.; Hu, Z.R. Study on properties of polybenzoxazine/GF laminate. Insul. Mater. Commun. 2000, 5, 21–25. [Google Scholar]
- Zheng, L.; Zhang, C.; Cao, Y.; He, Q.; Gu, Y. Study on blending resin of benzoxazine and properties of their laminates. In Proceedings of the 15th National Composite Conference, Harbin, China, 25 July 2008. [Google Scholar]
- Cal, E.; Maffezzoli, A.; Mele, G.; Martina, F.; Mazzetto, S.E.; Tarzia, A.; Stifani, C. Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem. 2007, 9, 754. [Google Scholar] [CrossRef]
- Dansiri, N.; Yanumet, N.; Ellis, J.W.; Ishida, H. Resin transfer molding of natural fibre reinforced polybenzoxazine composities. Polym. Compos. 2002, 23, 352–360. [Google Scholar] [CrossRef]
- Tada, Y.; Nishioka, Y.; Takase, H. Phosphazene compound, production method thereof and use of thereof. JP2004043339, 12 February 2004. [Google Scholar]
- Liu, F.; Zhao, X.; Chen, Y. Resin of phenolic modification benzoxazine and its properties of composite. Acta Mater. Comps. Sin. 2008, 25, 57–63. [Google Scholar]
- Yin, C.; Xiao, J.; Li, J.; Liu, J.; Zeng, J.; Jiang, D. A study on quartz fibre reinforced benzoxazine resin composites. J. Natl. Univ. Defense Technol. 2008, 30, 25–28. [Google Scholar]
- Gu, Y.; Ran, Q.-C. Polybenzoxazine/Fibre Composites. In Handbook of Benzoxazine Resins; Ishida, H., Agag, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 481–494. [Google Scholar]
- Adams, R.D. The effect of fibre diameter on the dynamic properties of glass-fibre-reinforced polyester resin. J. Phys. D Appl. Phys. 1973, 6, 1032–1039. [Google Scholar] [CrossRef]
- Kun, F.; Carmona, H.A.; Andrade, J.S.; Herrmann, H.J. Universality behind Basquin’s Law of Fatigue. Phys. Rev. Lett. 2008, 100, 094301. [Google Scholar] [CrossRef] [Green Version]
- Colombo, C.; Vergani, L.; Burman, M. Static and fatigue characterisation of new basalt fibre reinforced composites. Compos. Struct. 2012, 94, 1165–1174. [Google Scholar] [CrossRef]
- Zakaria, K.A.; Jimit, R.H.; Ramli, S.N.R.; Aziz, A.A.; Bapokutty, O.; Ali, M.B. Study on fatigue life and fracture behaviour of fiberglass reinforced composites. J. Mech. Eng. Sci. 2016, 10, 2300–2310. [Google Scholar] [CrossRef]
- Yin, Y.; Binner, J.G.P.; Cross, T.E.; Marshall, S.J. The oxidation behaviour of carbon fibres. J. Mater. Sci. 1994, 29, 2250–2254. [Google Scholar] [CrossRef]
- Kessler, E.; Gadow, R.; Straub, J. Basalt, glass and carbon fibres and their fibre reinforced polymer composites under thermal and mechanical load. AIMS Mater. Sci. 2016, 3, 1561–1576. [Google Scholar] [CrossRef]
- Mouritz, A.P. Fire Safety of Advanced Composites for Aircraft; ASTB Research and Analysis Report; ASTM: Melbourne, Australia, 2006. [Google Scholar]
- Hull, T.R. Challenges in fire testing: Reaction to fire tests and assessment of fire toxicity. In Advances in Fire Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Pub: Cambridge, UK, 2008; pp. 255–290. [Google Scholar]
- Gurit. Composite Materials for Rail: Product Information. Available online: https://www.gurit.cn/-/media/Gurit/Datasheets/rail-materials-brochure.pdf (accessed on 16 July 2020).
- Horrocks, A.R.; Price, D. Advances in Fire Retardant Materials; Woodhead Pub: Cambridge, UK, 2008. [Google Scholar]
Material | CFE i (kW/m2) | Average Heat for Sustained Burning ii (MJ/m2) |
---|---|---|
BFRP | 39 ± 3 | 4.3 ± 2.2 |
GFRP | 34 ± 14 | 6.5 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolter, N.; Beber, V.C.; Sandinge, A.; Blomqvist, P.; Goethals, F.; Van Hove, M.; Jubete, E.; Mayer, B.; Koschek, K. Carbon, Glass and Basalt Fiber Reinforced Polybenzoxazine: The Effects of Fiber Reinforcement on Mechanical, Fire, Smoke and Toxicity Properties. Polymers 2020, 12, 2379. https://doi.org/10.3390/polym12102379
Wolter N, Beber VC, Sandinge A, Blomqvist P, Goethals F, Van Hove M, Jubete E, Mayer B, Koschek K. Carbon, Glass and Basalt Fiber Reinforced Polybenzoxazine: The Effects of Fiber Reinforcement on Mechanical, Fire, Smoke and Toxicity Properties. Polymers. 2020; 12(10):2379. https://doi.org/10.3390/polym12102379
Chicago/Turabian StyleWolter, Nick, Vinicius Carrillo Beber, Anna Sandinge, Per Blomqvist, Frederik Goethals, Marc Van Hove, Elena Jubete, Bernd Mayer, and Katharina Koschek. 2020. "Carbon, Glass and Basalt Fiber Reinforced Polybenzoxazine: The Effects of Fiber Reinforcement on Mechanical, Fire, Smoke and Toxicity Properties" Polymers 12, no. 10: 2379. https://doi.org/10.3390/polym12102379
APA StyleWolter, N., Beber, V. C., Sandinge, A., Blomqvist, P., Goethals, F., Van Hove, M., Jubete, E., Mayer, B., & Koschek, K. (2020). Carbon, Glass and Basalt Fiber Reinforced Polybenzoxazine: The Effects of Fiber Reinforcement on Mechanical, Fire, Smoke and Toxicity Properties. Polymers, 12(10), 2379. https://doi.org/10.3390/polym12102379