Aminophosphonic Acid Functionalized Cellulose Nanofibers for Efficient Extraction of Trace Metal Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Functionalization of Cellulose Nanofibers
2.3. Batch Procedure for Metal Ion Removal
2.4. Continuous Column Procedure for Metal Ions Removal
2.5. ICP-OES Operating Conditions
2.6. Material Characterization
3. Results and Discussion
3.1. Characterization
3.2. Batch Extraction Studies
3.3. Adsorption Isotherms
3.4. Hydrophilicity Test
3.5. Effect of Sample Flow Rate
3.6. Preconcentration and Breakthrough Studies
3.7. Analytical Figure of Merit and Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buccione, R.; Fortunato, E.; Paternoster, M.; Rizzo, G.; Sinisi, R.; Summa, V.; Mongelli, G. Mineralogy and heavy metal assessment of the Pietra del Pertusillo reservoir sediments (Southern Italy). Environ. Sci. Pollut. Res. Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gemeda, F.T.; Guta, D.D.; Wakjira, F.S.; Gebresenbet, G. Occurrence of heavy metal in water, soil, and plants in fields irrigated with industrial wastewater in Sabata town, Ethiopia. Environ. Sci. Pollut. Res. Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Anito, D.A.; Wang, T.X.; Liu, Z.W.; Ding, X.; Han, B.H. Iminodiacetic acid-functionalized porous polymer for removal of toxic metal ions from water. J. Hazard. Mater. 2020, 400, 123188. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Wang, L.; Yang, L.; Yu, J.; Lv, J.; Meng, M.; Li, G. Heavy metal pollution and the risk from tidal flat reclamation in coastal areas of Jiangsu, China. Mar. Pollut. Bull. 2020, 158, 111427. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Q.; Yuan, Y.; Sun, W. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem. 2020, 316, 126213. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Kanel, S.R.; Nakarmi, A. Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants. Water Environ. Res. 2020. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Fernandez-Delgado, O.; Deemer, E.; Wang, H.; El-Gendy, A.A.; Curry, M.L.; Noveron, J.C. Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J. Mol. Liq. 2019, 290, 111059. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Deemer, E.; Fernandez-Delgado, O.; Wang, H.; Curry, M.L.; El-Gendy, A.A.; Noveron, J.C. Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal. Commun. 2019, 130, 105753. [Google Scholar] [CrossRef]
- Mijosek, T.; Filipovic Marijic, V.; Dragun, Z.; Ivankovic, D.; Krasnici, N.; Redzovic, Z.; Sertic Peric, M.; Vdovic, N.; Bacic, N.; Dautovic, J.; et al. The assessment of metal contamination in water and sediments of the lowland Ilova River (Croatia) impacted by anthropogenic activities. Environ. Sci. Pollut. Res. Int. 2020, 27, 25374–25389. [Google Scholar] [CrossRef]
- Abdollahi, N.; Akbar Razavi, S.A.; Morsali, A.; Hu, M.L. High capacity Hg(II) and Pb(II) removal using MOF-based nanocomposite: Cooperative effects of pore functionalization and surface-charge modulation. J. Hazard. Mater. 2020, 387, 121667. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, X. Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Sci. Technol. 2020, 81, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Song, J.; Wang, H.; Zhang, W.; Wang, B.; Lyu, W.; Wang, Q.; Liu, P.; Chen, L.; Xing, J. Adsorption of Cr(VI) and Cu(II) from aqueous solutions by biochar derived from Chaenomeles sinensis seed. Water Sci. Technol. 2019, 80, 2260–2272. [Google Scholar] [CrossRef] [PubMed]
- Musarurwa, H.; Tavengwa, N.T. Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments. Carbohydr. Polym. 2020, 237, 116142. [Google Scholar] [CrossRef]
- Pang, H.; Wu, Y.; Wang, X.; Hu, B.; Wang, X. Recent Advances in Composites of Graphene and Layered Double Hydroxides for Water Remediation: A Review. Chem. Asian J. 2019, 14, 2542–2552. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.Z.N.; Wan Salleh, W.N.; Ismail, A.F.; Yusof, N.; Mohd Yusop, M.Z.; Aziz, F. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere 2020, 248, 126008. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Liu, C.; Kong, B.; Sun, J.; Gong, Y.; Liu, K.; Xie, J.; Pei, A.; Cui, Y. Amidoxime-Functionalized Macroporous Carbon Self-Refreshed Electrode Materials for Rapid and High-Capacity Removal of Heavy Metal from Water. ACS Cent. Sci. 2019, 5, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.A.; Puente Santiago, A.R.; Sanad, M.F.; Weller, J.M.; Fernandez-Delgado, O.; Barrera, L.A.; Maturano-Rojas, V.; Alvaradio-Tenorio, B.; Chan, C.K.; Noveron, J.C. Tissue paper-derived porous carbon encapsulated transition metal nanoparticles as advanced non-precious catalysts: Carbon-shell influence on the electrocatalytic behaviour. J. Colloid Interface Sci. 2021, 581, 905–918. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Puente Santiago, A.R.; Rodriguez, A.; Maturano-Rojas, V.; Alvarado-Tenorio, B.; Bernal, R.; Noveron, J.C. Biomass-derived ultrathin carbon-shell coated iron nanoparticles as high-performance tri-functional HER, ORR and Fenton-like catalysts. J. Clean Prod. 2020, 275, 124141. [Google Scholar] [CrossRef]
- Zhao, C.; Song, T.; Yu, Y.; Qu, L.; Cheng, J.; Zhu, W.; Wang, Q.; Li, P.; Tang, W. Insight into the influence of humic acid and sodium alginate fractions on membrane fouling in coagulation-ultrafiltration combined system. Environ. Res. 2020, 191, 110228. [Google Scholar] [CrossRef]
- Hansen, S.H.; Nierychlo, M.; Christensen, M.L.; Nielsen, P.H.; Jorgensen, M.K. Fouling of membranes in membrane bioreactors for wastewater treatment: Planktonic bacteria can have a significant contribution. Water Environ. Res. 2020. [Google Scholar] [CrossRef]
- Azzouz, A.; Kailasa, S.K.; Lee, S.S.; Rascón, J.A.; Ballesteros, E.; Zhang, M.; Kim, K.-H. Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. Trends Analyt. Chem. 2018, 108, 347–369. [Google Scholar] [CrossRef]
- Hussain, D.; Raza Naqvi, S.T.; Ashiq, M.N.; Najam-ul-Haq, M. Analytical sample preparation by electrospun solid phase microextraction sorbents. Talanta 2020, 208, 120413. [Google Scholar] [CrossRef] [PubMed]
- Panja, S.; Hanson, S.; Wang, C. EDTA-Inspired Polydentate Hydrogels with Exceptionally High Heavy Metal Adsorption Capacity as Reusable Adsorbents for Wastewater Purification. ACS Appl. Mater. Interfaces 2020, 12, 25276–25285. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Hu, W.; Guo, M.; Wang, Y.; Jia, J.; Hu, Z. Preparation of cotton-based fibrous adsorbents for the removal of heavy metal ions. Carbohydr. Polym. 2019, 225, 115218. [Google Scholar] [CrossRef]
- Tamjidi, S.; Ameri, A. A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater. Environ. Sci. Pollut. Res. Int. 2020, 27, 31105–31119. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Xiao, H.; Jiang, X.; Liu, L.; Cao, M.; Wang, Z. Exploring of toxic Pb(II) removal by low-cost bio-adsorbent of camphor leaf forestry waste after camphor oil extraction. Environ. Sci. Pollut. Res. Int. 2020. [Google Scholar] [CrossRef]
- Li, Y.K.; Li, W.T.; Liu, X.; Yang, T.; Chen, M.L.; Wang, J.H. Functionalized magnetic composites based on the aptamer serve as novel bio-adsorbent for the separation and preconcentration of trace lead. Talanta 2019, 203, 210–219. [Google Scholar] [CrossRef]
- Silva, S.S.; Fernandes, E.M.; Pina, S.; Silva-Correia, J.; Vieira, S.; Oliveira, J.M.; Reis, R. 2.11 Polymers of Biological Origin. In Comprehensive Biomaterials II, 2nd ed.; Ducheyne, P., Ed.; Elsevier Ltd.: Oxford, UK, 2017; Volume 2, pp. 228–252. [Google Scholar]
- Lin, D.; Liu, Z.; Shen, R.; Chen, S.; Yang, X. Bacterial cellulose in food industry: Current research and future prospects. Int. J. Biol. Macromol. 2020, 158, 1007–1019. [Google Scholar] [CrossRef]
- Ma, C.; Cao, W.-T.; Zhang, W.; Ma, M.-G.; Sun, W.-M.; Zhang, J.; Chen, F. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 2021, 403, 126438. [Google Scholar] [CrossRef]
- Buruaga-Ramiro, C.; Valenzuela, S.V.; Valls, C.; Roncero, M.B.; Pastor, F.I.J.; Díaz, P.; Martinez, J. Development of an antimicrobial bioactive paper made from bacterial cellulose. Int. J. Biol. Macromol. 2020, 158, 587–594. [Google Scholar] [CrossRef]
- Fernandes, I.d.A.A.; Pedro, A.C.; Ribeiro, V.R.; Bortolini, D.G.; Ozaki, M.S.C.; Maciel, G.M.; Haminiuk, C.W.I. Bacterial cellulose: From production optimization to new applications. Int. J. Biol. Macromol. 2020, 164, 2598–2611. [Google Scholar] [CrossRef]
- Hou, G.-Y.; Lyu, Z.-Y.; Tang, Y.-P.; Cao, H.-Z.; Zheng, G.-Q. Preparation of flexible composite electrode with bacterial cellulose (BC)-derived carbon aerogel supported low loaded NiS for methanol electrocatalytic oxidation. Int. J. Hydrog. Energy 2020, 45, 16049–16059. [Google Scholar] [CrossRef]
- Frone, A.N.; Panaitescu, D.M.; Nicolae, C.A.; Gabor, A.R.; Trusca, R.; Casarica, A.; Stanescu, P.O.; Baciu, D.D.; Salageanu, A. Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. Mater. Sci. Eng. C 2020, 110, 110740. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cui, J.; Xu, X.; Sun, B.; Zhang, L.; Dong, W.; Chen, C.; Sun, D. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Carbohyd. Polym. 2020, 229, 115512. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Tian, X.; Wang, Z.; Guan, Z.; Li, X.; Qiao, H.; Ke, H.; Luo, L.; Wei, Q. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020, 383, 123127. [Google Scholar] [CrossRef]
- Hosseini, H.; Mousavi, S.M. Bacterial cellulose/polyaniline nanocomposite aerogels as novel bioadsorbents for removal of hexavalent chromium: Experimental and simulation study. J. Clean. Prod. 2021, 278, 123817. [Google Scholar] [CrossRef]
- Larkin, P.J. Chapter 8—Illustrated IR and Raman Spectra Demonstrating Important Functional Groups. In Infrared and Raman Spectroscopy, 2nd ed.; Larkin, P.J., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 153–210. [Google Scholar]
- Jin, X.; Yu, C.; Li, Y.; Qi, Y.; Yang, L.; Zhao, G.; Hu, H. Preparation of novel nano-adsorbent based on organic–inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment. J. Hazard. Mater. 2011, 186, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 1968, 45, 581. [Google Scholar] [CrossRef]
- Chattaraj, P.K.; Lee, H.; Parr, R.G. HSAB principle. J. Am. Chem. Soc. 1991, 113, 1855–1856. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Ofomaja, A.E. Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresour. Technol. 2010, 101, 5868–5876. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.A.; Jabbari, V.; Imam, M.A.; Castro, E.; Kim, H.; Curry, M.L.; Valles-Rosales, D.J.; Noveron, J.C. Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci.Total Environ. 2020, 698, 134214. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Saenz-Arana, R.; Hernandez, C.; Guinto, T.; Ahsan, M.A.; Kim, H.; Lin, Y.; Alvarado-Tenorio, B.; Noveron, J.C. Adsorption of methylene blue and tetracycline onto biomass-based material prepared by sulfuric acid reflux. RSC Adv. 2018, 8, 32545–32557. [Google Scholar] [CrossRef] [Green Version]
- Martell, A.E. Chelation: Stability and selectivity. Ann. N. Y. Acad. Sci. 1960, 88, 284–292. [Google Scholar] [CrossRef]
- Martell, A.E. Complexation of labile metal ions and effect on toxicity. Biol. Trace Elem. Res. 1989, 21, 295–303. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of Detection A Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar]
- Cheng, R.; Kang, M.; Zhuang, S.; Shi, L.; Zheng, X.; Wang, J. Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA. J. Hazard. Mater. 2019, 364, 645–653. [Google Scholar] [CrossRef]
- Daochalermwong, A.; Chanka, N.; Songsrirote, K.; Dittanet, P.; Niamnuy, C.; Seubsai, A. Removal of Heavy Metal Ions Using Modified Celluloses Prepared from Pineapple Leaf Fiber. ACS Omega 2020, 5, 5285–5296. [Google Scholar] [CrossRef]
- Jin, X.; Xiang, Z.; Liu, Q.; Chen, Y.; Lu, F. Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution. Bioresour. Technol. 2017, 244, 844–849. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; Zhang, J.; Jiao, C.; Ding, L.; Yang, S. Synthesis and Adsorption Properties of Novel Bacterial Cellulose/Graphene Oxide/Attapulgite Materials for Cu and Pb Ions in Aqueous Solutions. Materials 2020, 13, 3703. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Ji, Y.; Zhang, S.; Zhang, J.; Cai, G. A Simple Low-Cost Method to Prepare Lignocellulose-Based Composites for Efficient Removal of Cd(II) from Wastewater. Polymers 2019, 11, 711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, L.; Yang, Z.; Huang, L.; He, Y.; Wang, H.; Zhang, L. Macroscopic Poly Schiff Base-Coated Bacteria Cellulose with High Adsorption Performance. Polymers 2020, 12, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | Peak Position (eV) | Height Cps | Fwhm (eV) | Area (p) Cps. eV | Atomic % |
---|---|---|---|---|---|
C1s | 286.28 | 16713.77 | 1.40 | 25314.38 | 27.51 |
O1s | 532.64 | 33598.79 | 1.92 | 76854.39 | 34.54 |
N1s | 401.93 | 1497.11 | 1.56 | 3777.23 | 2.65 |
P2p | 133.33 | 2243.30 | 1.90 | 4811.04 | 3.52 |
Co-Existing Ions | Salt Added | Amount Added (×103 µg L−1) | Recovery % (RSD) | ||
---|---|---|---|---|---|
Cu(II) | Pb(II) | Cd(II) | |||
Na+ | NaCl | 5800 | 99.9 (3.15) | 98.9 (3.75) | 99.1 (3.82) |
K+ | KCl | 5400 | 99.2 (3.65) | 99.7 (3.90) | 99.5 (3.65) |
Ca2+ | CaCl2 | 750 | 99.8(4.28) | 99.5 (3.05) | 99.0 (3.88) |
Mg2+ | MgCl2 | 1200 | 98.6 (4.34) | 99.5 (4.76) | 99.0 (3.94) |
Cl− | NaCl | 9800 | 99.9 (3.16) | 99.6 (4.72) | 99.6 (4.16) |
Br− | NaBr | 8200 | 98.5 (4.14) | 99.8 (4.19) | 99.6 (3.44) |
CO32− | Na2CO3 | 3400 | 97.6 (3.56) | 98.5 (4.05) | 98.2 (3.99) |
SO42− | Na2SO4 | 2200 | 97.5 (3.15) | 97.5 (4.32) | 98.5 (3.34) |
NO3− | NaNO3 | 3000 | 99.4 (3.05) | 98.3 (4.65) | 99.6 (5.05) |
CH3COO− | CH3COONa | 320 | 98.7 (4.96) | 99.5 (4.05) | 99.2 (3.96) |
C6H5O73− | Na3C6H5O7 | 2600 | 98.2 (3.15) | 97.5 (4.42) | 98.7 (4.34) |
Humic acid | - | 25 | 97.3 (4.54) | 96.8 (4.24) | 96.6 (4.04) |
Fulvic acid | - | 25 | 98.4 (4.05) | 97.5 (3.85) | 97.5 (4.05) |
Eluent | Concentration | Volume (mL) | Recovery Percent | ||
---|---|---|---|---|---|
Cu(II) | Pb(II) | Cd(II) | |||
HNO3 | 0.5 M | 3 | 48 | 40 | 35 |
5 | 75 | 78 | 73 | ||
10 | 85 | 87 | 85 | ||
1 M | 3 | 68 | 72 | 70 | |
5 | 80 | 82 | 85 | ||
10 | 95 | 100 | 98 | ||
2 M | 3 | 96 | 98 | 95 | |
5 | 100 | 99 | 100 | ||
10 | 100 | 100 | 100 | ||
HCl | 0.5 M | 3 | 48 | 42 | 40 |
5 | 75 | 75 | 73 | ||
10 | 92 | 90 | 87 | ||
1 M | 3 | 65 | 70 | 66 | |
5 | 80 | 78 | 80 | ||
10 | 98 | 99 | 99 | ||
2 M | 3 | 94 | 95 | 92 | |
5 | 98 | 99 | 100 | ||
10 | 100 | 100 | 100 | ||
H2SO4 | 0.5 M | 3 | 75 | 78 | 74 |
5 | 88 | 88 | 87 | ||
10 | 95 | 96 | 96 | ||
1 M | 3 | 92 | 94 | 96 | |
5 | 100 | 100 | 100 | ||
10 | 100 | 100 | 100 | ||
2 M | 3 | 97 | 99 | 100 | |
5 | 100 | 100 | 100 | ||
10 | 100 | 100 | 100 |
Metal Ions | Adsorption Capacities (mg g−1) | Breakthrough Volume (mL) | ||
---|---|---|---|---|
Batch Adsorption | Langmuir Model | Breakthrough Capacity | ||
Cu(II) | 76.20 | 81.40 | 74.10 | 1800 |
Pb(II) | 180.26 | 215.64 | 168.50 | 4200 |
Cd(II) | 103.40 | 110.18 | 101.06 | 2500 |
Co | 200 | 300 | 450 | 500 | 550 | 600 | 650 | 700 | 750 | |
---|---|---|---|---|---|---|---|---|---|---|
RL | Cu(II) | 0.121 | 0.116 | 0.095 | 0.089 | 0.085 | 0.079 | 0.075 | 0.067 | 0.058 |
Pb(II) | 0.126 | 0.115 | 0.104 | 0.098 | 0.088 | 0.078 | 0.071 | 0.053 | 0.048 | |
Cd(II) | 0.213 | 0.126 | 0.113 | 0.099 | 0.092 | 0.086 | 0.080 | 0.075 | 0.072 |
Sample Volume (mL) | Analyte Concentration (µg L−1) | Preconcentration Limit | Preconcentration Factor | ||||
---|---|---|---|---|---|---|---|
Cu(II) | Pb(II) | Cd(II) | Cu(II) | Pb(II) | Cd(II) | ||
1000 | 1.0 | 1.0 | 1.0 | 1.0 | 200 | 200 | 200 |
1500 | 0.66 | 0.66 | 0.66 | 0.66 | 300 | 300 | 300 |
2000 | 0.50 | 0.50 | 0.50 | 0.50 | 400 | 400 | 400 |
2500 | 0.40 | 0.40 | 0.40 | 0.40 | 500 | 500 | 500 |
2700 | 0.37 | 0.37 | 0.37 | 0.37 | 540 | 540 | 540 |
2900 | 0.34 | 0.34 | - | - | 580 | - | - |
3000 | 0.33 | - | - | - | - | - | - |
SRMs | Analyte | Certified Values (µg g−1) | Found (µg g−1) ± sda | t-Test Valuesb | |
---|---|---|---|---|---|
NIES 8 | Cu(II) | 67 | 65.8 ± 0.56 | 1.28 | |
Pb(II) | 219 | 217 ± 1.25 | 2.79 | ||
NIES 10c | Cd(II) | 1.82 | 1.76 ± 0.28 | 0.85 | |
Cu(II) | 4.1 | 3.92 ± 0.46 | 0.95 | ||
Samples | Analyte | Amount Spiked (µg) | Found (µg L−1) ± sd a | Recovery Percent (RSD) c | t-Test Values b |
Industrial wastewater | Cu(II) | 0 | 18.8 ± 1.42 | - | |
3 | 21.7 ± 1.67 | 96.7 (0.17) | 0.85 | ||
5 | 23.9 ± 2.03 | 102 (0.25) | 1.13 | ||
Pb(II) | 0 | 7.30 ± 0.85 | - | ||
3 | 10.25 ± 1.04 | 98.3 (0.26) | 0.65 | ||
5 | 12.40 ± 1.21 | 102 (0.19) | 0.97 | ||
Cd(II) | 0 | 3.57 ± 0.56 | - | ||
3 | 6.56 ± 0.84 | 99.7 ± (0.18) | 1.12 | ||
5 | 8.57 ± 0.89 | 100 ± (0.15) | 0.89 | ||
River water | Cu(II) | 0 | 8.76 ± 0.91 | - | |
3 | 11.72 ± 1.15 | 98.6 ± (0.21) | 1.53 | ||
5 | 13.75 ± 1.28 | 99.8 ± (1.17) | 1.72 | ||
Pb(II) | 0 | 4.96 ±0.85 | - | ||
3 | 7.90 ± 1.65 | 98.0 ± (1.12) | 0.98 | ||
5 | 10.02 ± 1.58 | 101 ± (1.27) | 1.17 | ||
Cd(II) | 0 | 3.98 ± 0.74 | - | ||
3 | 7.05 ± 1.01 | 102 ± (1.25) | 1.28 | ||
5 | 8.97 ± 1.12 | 99.8 ± (1.15) | 1.14 |
Adsorbent Material | Metal Ions | Adsorption Capacity (mg g−1) | References |
---|---|---|---|
APBC | Cd, Cu, Pb | 76, 108, 103 | this work |
BCM@APTES-EDTA | Sr | 44.86 | [50] |
Cell-EDTA and Cell-CM | Pb, Cd | 41.2, 33.2 and 63.4, 23.0 | [51] |
PEI-BC | Cu, Pb | 148, 141 | [52] |
BC/PVA/GO/APT | Cu, Pb | 150, 217 | [53] |
SP-(TA-APTES) | Cd | 22.66 | [54] |
pBC | Cr, Cu, Re | 321, 256,153 | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, H.; Alharbi, W.; BinSharfan, I.I.; Khan, R.A.; Alsalme, A. Aminophosphonic Acid Functionalized Cellulose Nanofibers for Efficient Extraction of Trace Metal Ions. Polymers 2020, 12, 2370. https://doi.org/10.3390/polym12102370
Ahmad H, Alharbi W, BinSharfan II, Khan RA, Alsalme A. Aminophosphonic Acid Functionalized Cellulose Nanofibers for Efficient Extraction of Trace Metal Ions. Polymers. 2020; 12(10):2370. https://doi.org/10.3390/polym12102370
Chicago/Turabian StyleAhmad, Hilal, Walaa Alharbi, Ibtisam I. BinSharfan, Rais Ahmad Khan, and Ali Alsalme. 2020. "Aminophosphonic Acid Functionalized Cellulose Nanofibers for Efficient Extraction of Trace Metal Ions" Polymers 12, no. 10: 2370. https://doi.org/10.3390/polym12102370
APA StyleAhmad, H., Alharbi, W., BinSharfan, I. I., Khan, R. A., & Alsalme, A. (2020). Aminophosphonic Acid Functionalized Cellulose Nanofibers for Efficient Extraction of Trace Metal Ions. Polymers, 12(10), 2370. https://doi.org/10.3390/polym12102370