Poly-(3-ethyl-3-hydroxymethyl)oxetanes—Synthesis and Adhesive Interactions with Polar Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. NMR and FTIR Measurements
2.2. Gel Permeation Chromatography (GPC)
2.3. MALDI-TOF Spectrometry
2.4. Lap Shear Strength
2.5. Contact Angle (θ) and Work of Adhesion (Wa)
2.6. Synthetic Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Magnusson, H.; Malmström, E.; Hult, A. Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-(hydroxymethyl) oxetane. Macromol. Rapid Commun. 1999, 20, 453–457. [Google Scholar] [CrossRef]
- Bednarek, M.; Biedroń, T.; Heliński, J.; Kałużyński, K.; Kubisa, P.; Penczek, S. Branched polyether with multiple primary hydroxyl groups: Polymerization of 3-ethyl-3-hydroxymethyloxetane. Macromol. Rapid Commun. 1999, 20, 369–372. [Google Scholar] [CrossRef]
- Motoi, M.; Nagahara, S.; Akiyama, H.; Horiuchi, M.; Kanoh, S. Preparation of polyoxetane-polystyrene composite resins and their use as polymeric supports of phase-transfer catalysts. Polym. J. 1989, 21, 987–1001. [Google Scholar] [CrossRef] [Green Version]
- Bednarek, M.; Kubisa, P.; Penczek, S. Multihydroxyl branched polyethers. 2. Mechanistic aspects of cationic polymerization of 3-ethyl-3-(hydroxymethyl) oxetane. Macromolecules 2001, 34, 5112–5119. [Google Scholar] [CrossRef]
- Yan, D.; Hou, J.; Zhu, X.; Kosman, J.J.; Wu, H.S. A new approach to control crystallinity of resulting polymers: Self-condensing ring opening polymerization. Macromol. Rapid Commun. 2000, 21, 557–561. [Google Scholar] [CrossRef]
- Mai, Y.; Zhou, Y.; Yan, D.; Lu, H. Effect of reaction temperature on degree of branching in cationic polymerization of 3-ethyl-3-(hydroxymethyl) oxetane. Macromolecules 2003, 36, 9667–9669. [Google Scholar] [CrossRef]
- Gong, W.; Mai, Y.; Zhou, Y.; Qi, N.; Wang, B.; Yan, D. Effect of the degree of branching on atomic-scale free volume in hyperbranched poly [3-ethyl-3-(hydroxymethyl) oxetane]. A positron study. Macromolecules 2005, 38, 9644–9649. [Google Scholar] [CrossRef]
- Ye, L.; Gao, P.; Wu, F.; Bai, Y.; Feng, Z.-G. Synthesis and application as polymer electrolyte of hyperbranched copolyethers derived from cationic ring-opening polymerization of 3-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}methyl- and 3-hydroxymethyl-3′-methyloxetane. Polymer 2007, 48, 1550–1556. [Google Scholar] [CrossRef]
- Shou, C.; Song, N.; Zhang, Z. Synthesis of hyperbranched poly (3-methyl-3-hydroxymethyloxetane) and their application to separate basic proteins by adsorption coated column. J. Appl. Polym. Sci. 2010, 116, 2473–2479. [Google Scholar] [CrossRef]
- Rahm, M.; Westlund, R.; Eldsäter, C.; Malmström, E. Tri-block copolymers of polyethylene glycol and hyperbranched poly-3-ethyl-3-(hydroxymethyl)oxetane through cationic ring opening polymerization. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 6191–6200. [Google Scholar] [CrossRef]
- Mai, Y.; Zhou, Y.; Yan, D.; Hou, J. Quantitative dependence of crystallinity on degree of branching for hyperbranched poly [3 -ethyl-3-(hydroxymethyl)oxetane]. New J. Phys. 2005, 7, 42. [Google Scholar] [CrossRef]
- Chen, Y.; Bednarek, M.; Kubisa, P.; Penczek, S. Synthesis of multihydroxyl branched polyethers by cationic copolymerization of 3,3-bis(hydroxymethyl)oxetane and 3-ethyl-3-(hydroxymethyl)oxetane. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 1991–2002. [Google Scholar] [CrossRef]
- Bednarek, M.; Kubisa, P. Chain-growth limiting reactions in the cationic polymerization of 3-ethyl-3-hydroxymethyloxetane. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 245–252. [Google Scholar] [CrossRef]
- Smith, T.J.; Mathias, L.J. Hyperbranched poly (3-ethyl-3-hydroxymethyloxetane) via anionic polymerization. Polymer 2002, 43, 7275–7278. [Google Scholar] [CrossRef]
- Kudo, H.; Morita, A.; Nishikubo, T. Synthesis of a hetero telechelic hyperbranched polyether. Anionic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl) oxetane using potassium tert-butoxide as an initiator. Polym. J. 2003, 35, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Morita, A.; Kudo, H.; Nishikubo, T. Synthesis and chemical modification of hyperbranched polyethers with terminal hydroxy groups by the anionic ring-opening polymerization of 3-alkyl-3-hydroxymethyl oxetanes. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3739–3750. [Google Scholar] [CrossRef]
- Bednarek, M. Structures and potential applications of multihydroxyl branched polyethers obtained by cationic ring-opening polymerization involving activated monomer mechanism. e-Polymers 2008, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- del Campo, A.; Bello, A.; Pérez, E. Synthesis of new side-chain liquid-crystalline polyoxetanes with two mesogenic groups connected by a flexible spacer in the side chain. Macromol. Chem. Phys. 2002, 203, 975–984. [Google Scholar] [CrossRef]
- Sai, R.; Ueno, K.; Fujii, K.; Nakano, Y.; Tsutsumi, H. Steric effect on Li+ coordination and transport properties in polyoxetane-based polymer electrolytes bearing nitrile groups. RSC Adv. 2017, 7, 37975–37982. [Google Scholar] [CrossRef] [Green Version]
- Sai, R.; Fujii, K.; Nakano, Y.; Shigaki, N.; Tsutsumi, H. Role of polar side chains in Li+ coordination and transport properties of polyoxetane-based polymer electrolytes. Phys. Chem. Chem. Phys. 2017, 19, 5185–5194. [Google Scholar] [CrossRef]
- Zheng, Y.; Wynne, K.J. Poly (bis-2,2,2-trifluoroethoxymethyl oxetane): Enhanced surface hydrophobicity by crystallization and spontaneous asperity formation. Langmuir 2007, 24, 11964–11967. [Google Scholar] [CrossRef] [PubMed]
- Gervais, M.; Forens, A.; Ibarboure, E.; Carlotti, S. Anionic polymerization of activated oxetane and its copolymerization with ethylene oxide for the synthesis of amphiphilic block copolymers. Polym. Chem. 2018, 9, 2660–2668. [Google Scholar] [CrossRef]
- Nair, S.S.; McCullough, E.J.; Yadavalli, V.K.; Wynne, K.J. Integrated compositional and nanomechanical analysis of a polyurethane surface modified with a fluorous oxetane siliceous-network hybrid. Langmuir 2014, 30, 12986–12995. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, S.; Wang, C.; Zhang, W.; Wynne, K.J. Rigid adherent-resistant elastomers (RARE): Nano-, meso-, and microscale tuning of hybrid fluorous polyoxetane–polyurethane blend coatings. Macromolecules 2013, 46, 984–2996. [Google Scholar] [CrossRef]
- Sharma, K.; Zolotarskaya, O.Y.; Wynne, K.J.; Yang, H. Poly (ethylene glycol)-armed hyperbranched polyoxetanes for anticancer drug delivery. J. Bioact. Compat. Polym. 2012, 27, 525–539. [Google Scholar] [CrossRef] [Green Version]
- Zolotarskaya, O.Y.; Wagner, A.F.; Beckta, J.M.; Valerie, K.; Wynne, K.J.; Yang, H. Synthesis of water-soluble camptothecin–polyoxetane conjugates via click chemistry. Mol. Pharm. 2012, 9, 3403–3408. [Google Scholar] [CrossRef] [Green Version]
- Zolotarskaya, O.Y.; Yuan, Q.; Wynne, K.J.; Yang, H. Synthesis and characterization of clickable cytocompatible poly(ethylene glycol)-grafted polyoxetane brush polymers. Macromolecules 2013, 46, 63–71. [Google Scholar] [CrossRef]
- Makal, U.; Uilk, J.; Kurt, P.; Cooke, R.S.; Wynne, K.J. Ring opening polymerization of 3-semifluoro- and 3-bromomethyloxetanes to poly (2,2-substituted-1,3-propylene oxide) telechelics for soft blocks in polyurethanes. Polymer 2005, 46, 2522–2530. [Google Scholar] [CrossRef]
- Kurt, P.; Wynne, K.J. Co-polyoxetanes with alkylammonium and fluorous or PEG-like side chains: Soft blocks for surface modifying polyurethanes. Macromolecules 2007, 40, 9537–9543. [Google Scholar] [CrossRef]
- Jia, M.; Li, A.; Mu, Y.; Jiang, Y.; Wan, X. Synthesis and adhesive property study of polyoxetanes grafted with catechols via Cu(I)-catalyzed click chemistry. Polymer 2014, 55, 1160–1166. [Google Scholar] [CrossRef]
- Li, A.; Jia, M.; Mu, Y.; Jiang, W.; Wan, X. Humid bonding with a water-soluble adhesive inspired by mussels and sandcastle worms. Macromol. Chem. Phys. 2015, 216, 450–459. [Google Scholar] [CrossRef]
- Cho, J.-D.; Han, S.-T.; Hong, J.-W. A novel in situ relative-conductivity-based technique for monitoring the cure process of UV-curable polymers. Polym. Test. 2007, 26, 71–76. [Google Scholar] [CrossRef]
- Sasaki, H. Photocurable pressure-sensitive adhesives using alkyl oxetane. In Photoinitiated Polymerization; Belfield, K.D., Crivello, J.V., Eds.; American Chemical Society: Washington, DC, USA, 2003; Volume 847, pp. 296–305. [Google Scholar]
- Mamiński, M.; Wawrzyńska, E.; Parzuchowski, P. Application of Poly (Hydroxy) Oxetanes and Hot-Melt Adhesive for Wood Bonding. Polish Patent Application No. P-417267, 19 May 2016. [Google Scholar]
- Penczek, S.; Kubisa, P.; Szymański, R. Activated monomer propagation in cationic polymerizations. Makromol. Chem. Makromol. Symp. 1986, 3, 203–220. [Google Scholar] [CrossRef]
- Wolkenhauer, A.; Avramidis, G.; Hauswald, E.; Militz, H.; Viöl, W. Sanding vs. plasma preatment of aged wood: A comparison with respect to surface energy. Int. J. Adhes. Adhes. 2009, 29, 18–22. [Google Scholar] [CrossRef]
- Gindl, M.; Sinn, G.; Gindl, W.; Reiterer, A.; Tschegg, S. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf A Physicochem. Eng. Asp. 2001, 181, 279–287. [Google Scholar] [CrossRef]
- Kubisa, P.; Penczek, S. Cationic activated monomer polymerizations of heterocyclic monomers. Prog. Polym. Sci. 1999, 24, 1409–1437. [Google Scholar] [CrossRef]
- Bednarek, M.; Kubisa, P. Application of poly (3-ethyl-3-hydroxymethyloxetane) as macroinitiator for the synthesis of star polymers of ethylene oxide. Efficiency of initiation. Polimery 2004, 49, 719–723. [Google Scholar] [CrossRef] [Green Version]
- Haag, R.; Stumbe, J.-F.; Sunder, A.; Frey, H.; Hebel, A. An approach to core shell-type architectures in hyperbranched polyglycerols by selective chemical differentiation. Macromolecules 2000, 33, 8158–8166. [Google Scholar] [CrossRef]
- Mamiński, M.; Parzuchowski, P.; Trojanowska, A.; Dziewulski, S. Fast-curing polyurethane adhesives derived from environmentally friendly hyperbranched polyglycerols—The effect of macromonomer structure. Biomass Bioenergy 2011, 35, 4446–4468. [Google Scholar] [CrossRef]
- Hölter, D.; Burgath, A.; Frey, H. Degree of branching in hyperbranched polymers. Acta Polym. 1997, 48, 30–35. [Google Scholar] [CrossRef]
- Galina, H.; Krawczyk, M. A simple model of hyperbranched polymerisation involving AB2 and Bf core monomers and methods of narrowing the molecular size distribution. Polym. Bull. 2007, 58, 83–91. [Google Scholar] [CrossRef]
- Kim, Y. Hyperbranched polymers 10 years after. J. Polym. Sci. Part A Polym. Chem. 1998, 36, 1685–1698. [Google Scholar] [CrossRef]
- Sunder, A.; Hanselmann, R.; Frey, H.; Mülhaupt, R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 1999, 32, 4240–4246. [Google Scholar] [CrossRef]
- Rokicki, G.; Rakoczy, P.; Parzuchowski, P.; Sobiecki, M. Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: Glycerol carbonate. Green Chem. 2005, 7, 529–539. [Google Scholar] [CrossRef]
- Bahattab, M.A.; Donate-Robles, J.; García-Pacios, V.; Martín-Martínez, J.M. Characterization of polyurethane adhesives containing nanosilicas of different particle size. Int. J. Adhes. Adhes. 2011, 31, 97–103. [Google Scholar] [CrossRef]
- Suo, Z. Failure of brittle adhesive joints. Appl. Mech. Rev. 1990, 43, 276–279. [Google Scholar] [CrossRef]
- Gordon, T.L.; Fakley, M.E. The influence of elastic modulus on adhesion to thermoplastics and thermoset materials. Int. J. Adhes. Adhes. 2003, 23, 95–100. [Google Scholar] [CrossRef]
- EN 314-2. Plywood—Bonding Quality—Part 2: Requirements; European Committee for Standardization (CEN): Brussels, Belgium, 1993. [Google Scholar]
- Viljanmaa, M.; Södergård, A.; Törmälä, P. Lactic acid based polymers as hot melt adhesives for packaging applications. Int. J. Adhes. Adhes. 2002, 22, 219–226. [Google Scholar] [CrossRef]
- Bekhta, P.; Sedliačik, J. Environmentally-friendly high-density polyethylene-bonded plywood panels. Polymers 2019, 11, 1166. [Google Scholar] [CrossRef] [Green Version]
- Kajaks, J.A.; Bakradze, G.G.; Viksne, A.V.; Reihmane, S.A.; Kalnins, M.M.; Krutohvostov, R. The use of polyolefins-based hot melts for wood bnding. Mech. Compos. Mater. 2009, 45, 643–650. [Google Scholar] [CrossRef]
- Smith, M.J.; Dai, H.; Ramani, K. Wood-thermoplastic adhesive interface—Method of characterization and results. Int. J. Adhes. Adhes. 2002, 22, 197–204. [Google Scholar] [CrossRef]
Theoretical Molar Mass [g/mol] | TMP/EHO Molar Ratio | EHO [g] | TMP [g] | BF3Et2O [g] |
---|---|---|---|---|
714 | 1:5 | 10.25 | 2.36 | 0.13 |
1295 | 1:10 | 18.00 | 2.36 | 0.25 |
2457 | 1:20 | 20.50 | 1.18 | 0.25 |
5942 | 1:50 | 51.58 | 1.18 | 0.63 |
TMP/EHO Molar Ratio | Mn | Mw | D |
---|---|---|---|
1:5 | 1240 | 1690 | 1.77 |
1:10 | 1220 | 1650 | 2.18 |
1:20 | 1160 | 1390 | 2.52 |
1:50 | 1310 | 1850 | 3.57 |
TMP/EHO Molar Ratio | Ts [°C] | Tf [°C] | θ [deg] | Wa [mJ/m2] |
---|---|---|---|---|
1:5 | 88 | 105.1 | 67.2 ± 4.6 | 101.3 ± 7.2 |
1:10 | 87 | 105.4 | 66.5 ± 0.6 | 102.2 ± 0.7 |
1:20 | 88 | 105.2 | 64.1 ± 2.9 | 104.5 ± 3.5 |
1:50 | 80 | 105.1 | 65.4 ± 1.0 | 104.8 ± 0.4 |
Reference a | – | – | 82.1 ± 4.4 | 80.3 ± 3.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parzuchowski, P.; Mamiński, M.Ł. Poly-(3-ethyl-3-hydroxymethyl)oxetanes—Synthesis and Adhesive Interactions with Polar Substrates. Polymers 2020, 12, 222. https://doi.org/10.3390/polym12010222
Parzuchowski P, Mamiński MŁ. Poly-(3-ethyl-3-hydroxymethyl)oxetanes—Synthesis and Adhesive Interactions with Polar Substrates. Polymers. 2020; 12(1):222. https://doi.org/10.3390/polym12010222
Chicago/Turabian StyleParzuchowski, Paweł, and Mariusz Ł. Mamiński. 2020. "Poly-(3-ethyl-3-hydroxymethyl)oxetanes—Synthesis and Adhesive Interactions with Polar Substrates" Polymers 12, no. 1: 222. https://doi.org/10.3390/polym12010222
APA StyleParzuchowski, P., & Mamiński, M. Ł. (2020). Poly-(3-ethyl-3-hydroxymethyl)oxetanes—Synthesis and Adhesive Interactions with Polar Substrates. Polymers, 12(1), 222. https://doi.org/10.3390/polym12010222