(1S,2S)-Cyclohexane-1,2-diamine-based Organosilane Fibres as a Powerful Tool Against Pathogenic Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterisation Techniques
2.1.1. Scanning Electron Microscopy
2.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.1.3. 29Si cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP/MAS NMR) Spectroscopy
2.1.4. Thermogravimetric Analysis Fourier Transform Infrared Spectroscopy (TGA-FTIR)
2.2. Antibacterial Activity Assessments
2.2.1. Qualitative Method
2.2.2. Quantitative Method
2.2.3. Bacterial Adhesion
2.3. Cytotoxicity Experiments
3. Results and Discussion
3.1. Characterisation of Pure Organosilane Fibres with DACH Functionality
3.2. Biomedical Applications
3.2.1. Assessment of the Inhibition Zone—Antibacterial Activity in Direct Contact
3.2.2. Assessment of Antibacterial Activity
3.2.3. Bacterial Adhesion Activity
3.3. Cytocompatibility Assessments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bogdanović, U.; Dimitrijević, S.; Škapin, S.D.; Popović, M.; Rakočević, Z.; Leskovac, A.; Petrović, S.; Stoiljković, M.; Vodnik, V. Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation. Mater. Sci. Eng. C 2018, 93, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Kadri, S.M. An overview of hospital acquired infections and the role of the microbiology laboratory. Int. J. Res. Med. Sci. 2017, 2, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.A.; Baig, F.K.; Mehboob, R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac. J. Trop. Biomed. 2017, 7, 478–482. [Google Scholar] [CrossRef]
- Wang, Y.; Han, B.; Xie, Y.; Wang, H.; Wang, R.; Xia, W.; Li, H.; Sun, H. Combination of gallium(iii) with acetate for combating antibiotic resistant Pseudomonas aeruginosa. Chem. Sci. 2019, 10, 6099–6106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichter, J.A.; Van Vliet, K.J.; Rubner, M.F. Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform. Macromolecules 2009, 42, 8573–8586. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, P.; Kumar, N.; Joshi, S.; Rohilla, R.K.; Roy, N.; Rawat, D.S. Synthesis, antimicrobial activity and structure–activity relationship study of N,N-dibenzyl-cyclohexane-1,2-diamine derivatives. Eur. J. Med. Chem. 2011, 46, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Beena, J.S.; Kumar, N.; Kidwai, S.; Singh, R.; Rawat, D.S. Synthesis and antitubercular activity evaluation of novel unsymmetrical cyclohexane-1,2-diamine derivatives. Arch. Pharm. Weinh. 2012, 345, 896–901. [Google Scholar] [CrossRef]
- Beena, J.S.; Kumar, D.; Kumbukgolla, W.; Jayaweera, S.; Bailey, M.; Alling, T.; Ollinger, J.; Parish, T.; Rawat, D.S. Antibacterial activity of adamantyl substituted cyclohexane diamine derivatives against methicillin resistant Staphylococcus aureus and Mycobacterium tuberculosis. RSC Adv. 2014, 4, 11962–11966. [Google Scholar] [CrossRef]
- Kumar, D.; Raj, K.K.; Bailey, M.; Alling, T.; Parish, T.; Rawat, D.S. Antimycobacterial activity evaluation, time-kill kinetic and 3D-QSAR study of C-(3-aminomethyl-cyclohexyl)-methylamine derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 1365–1369. [Google Scholar] [CrossRef]
- Kickelbick, G. (Ed.) Hybrid Materials: Synthesis, Characterization, and Applications; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Gómez-Romero, P.; Sanchez, C. (Eds.) Functional Hybrid Materials; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic–inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696. [Google Scholar] [CrossRef]
- Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of Organic-Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv. Funct. Mater. 2018, 28, 1704158. [Google Scholar] [CrossRef]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Gugliemli, M.; Kickelbick, K.; Martucci, A. (Eds.) Advances in Sol-Gel Derived Materials and Technologies. In Sol-Gel Nanocomposites; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kaur, S.; Gallei, M.; Ionescu, E. Polymer–Ceramic Nanohybrid Materials. In Organic-Inorganic Hybrid Nanomaterials; Kalia, S., Haldorai, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 267, pp. 143–185. [Google Scholar]
- Rai, R.V.; Bai, J.A. Nanoparticles and Their Potential Application as Antimicrobials, Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Formatex, Microbiology Series: Badajoz, Spain, 2011; Volume 1, pp. 197–209. [Google Scholar]
- Ciraldo, F.E.; Schnepf, K.; Goldmann, W.H.; Boccaccini, A.R. Development and Characterization of Bioactive Glass Containing Composite Coatings with Ion Releasing Function for Antibiotic-Free Antibacterial Surgical Sutures. Materials 2019, 12, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, S.; Li, G.; Yin, J. Fluorescent nanofibrous membranes for trace detection of TNT vapor. J. Mater. Chem. 2007, 17, 2730. [Google Scholar] [CrossRef]
- Schramm, C.; Rinderer, B.; Tessadri, R. Synthesis and characterization of novel ultrathin polyimide fibres via sol-gel process and electrospinning. J. Appl. Polym. Sci. 2013, 128, 1274–1281. [Google Scholar] [CrossRef]
- Gualandi, C.; Celli, A.; Zucchelli, A.; Focarete, M.L. Nanohybrid Materials by Electrospinning. In Organic-Inorganic Hybrid Nanomaterials; Kalia, S., Haldorai, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 267, pp. 87–142. [Google Scholar]
- Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials. Adv. Mater. 2007, 19, 1309–1319. [Google Scholar] [CrossRef]
- Ding, Y.; Li, W.; Correia, A.; Yang, Y.; Zheng, K.; Liu, D.; Schubert, D.W.; Boccaccini, A.R.; Santos, H.A.; Roether, J.A. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/Sol-Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications. ACS Appl Mater Interfaces 2018, 10, 14540–14548. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Yao, Q.; Li, W.; Schubert, D.W.; Boccaccini, A.R.; Roether, J.A. The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol–gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. Colloids Surf. B Biointerfaces 2015, 136, 93–98. [Google Scholar] [CrossRef]
- Dhand, C.; Balakrishnan, Y.; Ong, S.T.; Dwivedi, N.; Venugopal, J.R.; Harini, S.; Leung, C.M.; Low, K.Z.W.; Loh, X.J.; Beuerman, R.W.; et al. Antimicrobial quaternary ammonium organosilane cross-linked nanofibrous collagen scaffolds for tissue engineering. Int. J. Nanomed. 2018, 13, 4473–4492. [Google Scholar] [CrossRef] [Green Version]
- Moreau, J.J.E.; Vellutini, L.; Wong Chi Man, M.; Bied, C. Shape-Controlled Bridged Silsesquioxanes: Hollow Tubes and Spheres. Chem. Eur. J. 2003, 9, 1594–1599. [Google Scholar] [CrossRef]
- Iimura, K.; Oi, T.; Suzuki, M.; Hirota, M. Preparation of silica fibres and non-woven cloth by electrospinning. Adv. Powder Technol. 2010, 21, 64–68. [Google Scholar] [CrossRef]
- Brus, J.; Urbanová, M.; Strachota, A. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes: Structure and Segmental Dynamics as Studied by Solid-State NMR. Macromolecules 2008, 41, 372–386. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, L.; An, X.; Liu, C.; Hu, Y. Surface Engineering of Thin Film Composite Polyamide Membranes with Silver Nanoparticles through Layer-by-Layer Interfacial Polymerization for Antibacterial Properties. ACS Appl. Mater. Interfaces 2017, 9, 40987–40997. [Google Scholar] [CrossRef] [PubMed]
- Kickelbick, G. Introduction to Hybrid Materials. In Hybrid Materials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 1–48. [Google Scholar]
- Brinker, C.J.; Scherer, G. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Sakka, S.; Kamiya, K. The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibres and films. J. Non-Cryst. Solids 1982, 48, 31–46. [Google Scholar] [CrossRef]
- Liu, F.; Fu, L.; Wang, J.; Meng, Q.; Li, H.; Guo, J.; Zhang, H. Luminescent film with terbium-complex-bridged polysilsesquioxanesElectronic supplementary information (ESI) available: IR, UV-Vis and excitation spectra and decay curves. New J. Chem. 2003, 27, 233–235. [Google Scholar] [CrossRef]
- Liu, N.; Yu, K.; Smarsly, B.; Dunphy, D.R.; Jiang, Y.-B.; Brinker, C.J. Self-Directed Assembly of Photoactive Hybrid Silicates Derived from an Azobenzene-Bridged Silsesquioxane. J. Am. Chem. Soc. 2002, 124, 14540–14541. [Google Scholar] [CrossRef] [PubMed]
- Álvaro, M.; Benitez, M.; Das, D.; Ferrer, B.; García, H. Synthesis of Chiral Periodic Mesoporous Silicas (ChiMO) of MCM-41 Type with Binaphthyl and Cyclohexadiyl Groups Incorporated in the Framework and Direct Measurement of Their Optical Activity. Chem. Mater. 2004, 16, 2222–2228. [Google Scholar] [CrossRef]
- Innocenzi, P. Infrared spectroscopy of sol–gel derived silica-based films: A spectra-microstructure overview. J. Non-Cryst. Solids 2003, 316, 309–319. [Google Scholar] [CrossRef]
- Olejniczak, Z.; Łęczka, M.; Cholewa-Kowalska, K.; Wojtach, K.; Rokita, M.; Mozgawa, W. 29Si MAS NMR and FTIR study of inorganic–organic hybrid gels. J. Mol. Struct. 2005, 744–747, 465–471. [Google Scholar] [CrossRef]
Sol-Gel Parameters | Parameters of Needle-Electrospinning | |||||
---|---|---|---|---|---|---|
Molar Ratio r = [H2O]/[silanes] | Molar Ratio Alc = [EtOH]/[silanes] | Viscosity [mPa·s] | Feeding Rate [mL·h−1] | Tip-To-Collector Distance [cm] | High Voltage [kV] | Temperature/Relative Humidity |
2.0 | 9.7 | 40–60 | 0.5–1 | 15–20 | 20–25 | 25 °C/30% |
Relative Amount of Building Units, % | RATIO Σ Tn:Qn | ||||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | Q1 | Q2 | Q3 | Q4 | |
1 | 27 | 38 | 0 | 11 | 20 | 3 | 66:34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Máková, V.; Holubová, B.; Tetour, D.; Brus, J.; Řezanka, M.; Rysová, M.; Hodačová, J. (1S,2S)-Cyclohexane-1,2-diamine-based Organosilane Fibres as a Powerful Tool Against Pathogenic Bacteria. Polymers 2020, 12, 206. https://doi.org/10.3390/polym12010206
Máková V, Holubová B, Tetour D, Brus J, Řezanka M, Rysová M, Hodačová J. (1S,2S)-Cyclohexane-1,2-diamine-based Organosilane Fibres as a Powerful Tool Against Pathogenic Bacteria. Polymers. 2020; 12(1):206. https://doi.org/10.3390/polym12010206
Chicago/Turabian StyleMáková, Veronika, Barbora Holubová, David Tetour, Jiří Brus, Michal Řezanka, Miroslava Rysová, and Jana Hodačová. 2020. "(1S,2S)-Cyclohexane-1,2-diamine-based Organosilane Fibres as a Powerful Tool Against Pathogenic Bacteria" Polymers 12, no. 1: 206. https://doi.org/10.3390/polym12010206