Next Article in Journal
Phase Inversion in PVDF Films with Enhanced Piezoresponse Through Spin-Coating and Quenching
Next Article in Special Issue
Advances in Biodegradable Nano-Sized Polymer-Based Ocular Drug Delivery
Previous Article in Journal
FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties
Previous Article in Special Issue
Submicron-Sized Nanocomposite Magnetic-Sensitive Carriers: Controllable Organ Distribution and Biological Effects
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle

Plasticiser-Free 3D Printed Hydrophilic Matrices: Quantitative 3D Surface Texture, Mechanical, Swelling, Erosion, Drug Release and Pharmacokinetic Studies

1
Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
2
College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
3
System Engineering Department, Military Technological College, Muscat 111, Oman
4
The Wolfson Centre for Bulk Solid Handling Technology, University of Greenwich, London SE10 9LS, UK
5
School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
*
Author to whom correspondence should be addressed.
Polymers 2019, 11(7), 1095; https://doi.org/10.3390/polym11071095
Received: 2 May 2019 / Revised: 14 June 2019 / Accepted: 25 June 2019 / Published: 28 June 2019
  |  
PDF [4766 KB, uploaded 2 July 2019]
  |  

Abstract

Hydroxypropyl methyl cellulose, HPMC, a hydrophilic polymer, is widely used for the development of extended release hydrophilic matrices and it is also considered as a good contender for the fabrication of 3D printing of matrix tablets. It is often combined with plasticisers to enable extrusion. The aim of the current project was to develop plasticizer-free 3D printed hydrophilic matrices using drug loaded filaments prepared via HME to achieve an in vitro (swelling, erosion and drug release) and in vivo (drug absorption) performance which is analogous to hydrophilic matrix tablets developed through conventional approaches. Additionally, the morphology of the printed tablets was studied using quantitative 3D surface texture studies and the porosity calculated. Filaments were produced successfully and used to produce matrix tablets with acceptable drug loading (95–105%), mechanical and surface texture properties regardless of the employed HPMC grade. The viscosity of HPMC had a discernible impact on the swelling, erosion, HPMC dissolution, drug release and pharmacokinetic findings. The highest viscosity grade (K100M) results in higher degree of swelling, decreased HPMC dissolution, low matrix erosion, decreased drug release and extended drug absorption profile. Overall, this study demonstrated that the drug loaded (glipizide) filaments and matrix tablets of medium to high viscosity grades of HPMC, without the aid of plasticisers, can be successfully prepared. Furthermore, the in vitro and in vivo studies have revealed the successful fabrication of extended release matrices. View Full-Text
Keywords: 3D printing; hot melt extrusion; hydroxypropyl methyl cellulose (HPMC); swelling; erosion; drug release; pharmacokinetics; Young’s modulus; 3D surface texture 3D printing; hot melt extrusion; hydroxypropyl methyl cellulose (HPMC); swelling; erosion; drug release; pharmacokinetics; Young’s modulus; 3D surface texture
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Khizer, Z.; Akram, M.R.; Sarfraz, R.M.; Nirwan, J.S.; Farhaj, S.; Yousaf, M.; Hussain, T.; Lou, S.; Timmins, P.; Conway, B.R.; Ghori, M.U. Plasticiser-Free 3D Printed Hydrophilic Matrices: Quantitative 3D Surface Texture, Mechanical, Swelling, Erosion, Drug Release and Pharmacokinetic Studies. Polymers 2019, 11, 1095.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top