Next Article in Journal
Diagrams of States of Single Flexible-Semiflexible Multi-Block Copolymer Chains: A Flat-Histogram Monte Carlo Study
Next Article in Special Issue
Polymeric Foams
Previous Article in Journal
Modification of Montmorillonite with Polyethylene Oxide and Its Use as Support for Pd0 Nanoparticle Catalysts
Previous Article in Special Issue
Shock-Driven Decomposition of Polymers and Polymeric Foams
Open AccessArticle

Transport Properties of One-Step Compression Molded Epoxy Nanocomposite Foams

1
Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/ Juan de la Cierva, 3, 28006 Madrid, Spain
2
Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén, 7, 47011 Valladolid, Spain
*
Author to whom correspondence should be addressed.
Polymers 2019, 11(5), 756; https://doi.org/10.3390/polym11050756
Received: 20 March 2019 / Revised: 16 April 2019 / Accepted: 25 April 2019 / Published: 30 April 2019
(This article belongs to the Special Issue Polymeric Foams)
Owing to their high strength and stiffness, thermal and environmental stability, lower shrinkage, and water resistance, epoxy resins have been the preferred matrix for the development of syntactic foams using hollow glass microspheres. Although these foams are exploited in multiple applications, one of their issues is the possibility of breakage of the glass hollow microspheres during processing. Here, we present a straightforward and single-step foaming protocol using expandable polymeric microspheres based on the well-established compression molding process. We demonstrate the viability of the protocol producing two sets of nanocomposite foams filled with carbon-based nanoparticles with improved transport properties. View Full-Text
Keywords: epoxy; foams; expandable microspheres; graphene; nanotubes; conductivity; syntactic foams epoxy; foams; expandable microspheres; graphene; nanotubes; conductivity; syntactic foams
Show Figures

Figure 1

MDPI and ACS Style

Martin-Gallego, M.; Lopez-Hernandez, E.; Pinto, J.; Rodriguez-Perez, M.A.; Lopez-Manchado, M.A.; Verdejo, R. Transport Properties of One-Step Compression Molded Epoxy Nanocomposite Foams. Polymers 2019, 11, 756.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop