Operating Characteristics of High-Order Distributed Feedback Polymer Lasers
Abstract
1. Introduction
2. Principle, Design, and Fabrication
2.1. Output Direction Analysis
2.2. Cavity Design and Sample Fabrication
3. Experiment and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campoy-Quiles, M.; Heliotis, G.; Xia, R.; Ariu, M.; Pintani, M.; Etchegoin, P.; Bradley, D.D. Ellipsometric characterization of the optical constants of polyfluorene gain media. Adv. Funct. Mater. 2005, 15, 925–933. [Google Scholar] [CrossRef]
- Xia, R.; Heliotis, G.; Hou, Y.; Bradley, D.D. Fluorene-based conjugated polymer optical gain media. Organic Electronics 2003, 4, 165–177. [Google Scholar] [CrossRef]
- Mohamad, S.A.; Ahlam, R.A.; Saradh, P.; Mamduh, J.A.; Ahmad, H.S.O.; Vadivel, M. A temperature-tunable thiophene polymer laser. Polymers 2018, 10, 470. [Google Scholar]
- Navarro-Fuster, V.; Vragovic, I.; Calzado, E.M.; Boj, P.G.; Quintana, J.A.; Villalvilla, J.M.; Retolaza, A.; Juarros, A.; Otaduy, D.; Merino, S.; Díaz-García, M.A. Film thickness and grating depth variation in organic second-order distributed feedback lasers. J. Appl. Phys. 2012, 112, 043104. [Google Scholar] [CrossRef]
- Huang, W.; Shen, S.; Pu, D.; Wei, G.; Ye, Y.; Peng, C.; Chen, L. Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures. J. Phys D Appl. Phys. 2015, 48, 495105. [Google Scholar] [CrossRef]
- Samuel, I.D.W.; Turnbull, G.A. Organic semiconductor lasers. Chem. Rev. 2007, 107, 1272–1295. [Google Scholar] [CrossRef] [PubMed]
- Karl, M.; Glackin, M.E.; Schubert, M.; Kronenberg, N.M.; Turnbull, G.A.; Samuel, I.D.W.; Gather, M.C. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 2018, 9, 1525. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Cao, F.; Chu, S.; Gong, Q.; Zhang, X. Continuously tunable distributed feedback polymer laser. Opt. Express 2018, 26, 4491–4497. [Google Scholar] [CrossRef] [PubMed]
- Kazarinov, R.; Henry, C. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE J. Quantum Electron. 1985, 21, 144–150. [Google Scholar] [CrossRef]
- Wang, S. Principles of distributed feedback and distributed Bragg-reflector lasers. IEEE J. Quantum Electron. 1974, 10, 413–427. [Google Scholar] [CrossRef]
- Turnbull, G.A.; Andrew, P.; Jory, M.J.; Barnes, W.L.; Samuel, I.D.W. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Phys. Rev. B 2001, 64, 125122. [Google Scholar] [CrossRef]
- Karnutsch, C.; Gýrtner, C.; Haug, V.; Lemmer, U.; Farrell, T.; Nehls, B.S.; Scherf, U.; Wang, J.; Weimann, T.; Heliotis, G.; Pflumm, C. Low threshold blue conjugated polymer lasers with first-and second-order distributed feedback. Appl. Phys. Lett. 2006, 89, 201108. [Google Scholar] [CrossRef]
- Streifer, W.; Scifres, D.; Burnham, R. Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers. IEEE J. Quantum Electron. 1975, 11, 867–873. [Google Scholar] [CrossRef]
- Streifer, W.; Scifres, D.; Burnham, R. Analysis of grating-coupled radiation in GaAs: GaAlAs lasers and waveguides-I. IEEE J. Quantum Electron. 1976, 12, 422–428. [Google Scholar] [CrossRef]
- Wenzel, H.; Guther, R.; Shams-Zadeh-Amiri, A.M.; Bienstman, P. A comparative study of higher order Bragg gratings: Coupled-mode theory versus mode expansion modeling. IEEE J. Quantum Electron. 2006, 42, 64–70. [Google Scholar] [CrossRef]
- Chen, Y.; Herrnsdorf, J.; Guilhabert, B.; Kanibolotsky, A.L.; Mackintosh, A.R.; Wang, Y.; Pethrick, R.A.; Gu, E.; Turnbull, G.A.; Skabara, P.J.; Samuel, I.D. Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite. Organic Electronics 2011, 12, 62–69. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Zhang, G.; Peng, Z.; Li, D.; Ma, J.; Xuan, L. Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders. J. Phys D Appl. Phys. 2016, 49, 465102. [Google Scholar] [CrossRef]
- Huang, W.; Pu, D.; Yang, X.; Wei, G.; Fang, Z.; Zhou, X.; Qiao, W.; Chen, L. A high-order external distributed feedback polymer laser with low working threshold. J. Phys D Appl. Phys. 2016, 49, 175106. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Peng, Z.; Mu, Q.; Cao, Z.; Lu, X.; Ma, J.; Xuan, L. Ultra-broad range organic solid-state laser from a dye-doped holographic grating quasi-waveguide configuration. J. Phys D Appl. Phys. 2017, 50, 315103. [Google Scholar] [CrossRef]
- Huang, W.; Diao, Z.; Liu, Y.; Peng, Z.; Yang, C.; Ma, J.; Xuan, L. Xuan Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique. Organic Electronics 2012, 13, 2307–2311. [Google Scholar] [CrossRef]
- Diao, Z.; Deng, S.; Huang, W.; Xuan, L.; Hu, L.; Liu, Y.; Ma, J. Organic dual-wavelength distributed feedback laser empowered by dye-doped holography. J. Mater. Chem. 2012, 22, 23331–23334. [Google Scholar] [CrossRef]
- Gersborg-Hansen, M.; Kristensen, A. Optofluidic third order distributed feedback dye laser. Appl. Phys. Lett. 2006, 89, 103518. [Google Scholar] [CrossRef]
- Gersborg-Hansen, M.; Kristensen, A. Tunability of optofluidic distributed feedback dye lasers. Opt. Express OE 2007, 15, 137–142. [Google Scholar] [CrossRef]
- Bjorkholm, J.E.; Shank, C.V. Higher-Order Distributed Feedback Oscillators. Appl. Phys. Lett. 1972, 20, 306–308. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, X.; Pang, Z.; Dou, F. Direct writing of polymer lasers using interference ablation. Adv. Mater. 2011, 23, 1860–1864. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Wang, Y.; Chen, L.; Wu, X.; Li, S.; Zhang, X. Red–green–blue laser emission from cascaded polymer membranes. Nanoscale 2015, 7, 19935–19939. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Heliotis, G.; Stavrinou, P.N.; Bradley, D.D.C. Polyfluorene distributed feedback lasers operating in the green-yellow spectral region. Appl. Phys. Lett. 2005, 87, 031104. [Google Scholar] [CrossRef]
- Wallikewitz, B.H.; de la Rosa, M.; Kremer, J.H.W.; Hertel, D.; Meerholz, K. A Lasing Organic Light-Emitting Diode. Adv. Mater. 2010, 22, 531–534. [Google Scholar] [CrossRef]
- Deotare, P.B.; Mahony, T.S.; Bulovic, V. Ultracompact low-threshold organic laser. ACS Nano 2014, 8, 11080–11085. [Google Scholar] [CrossRef]
Material | Photoresist | F8BT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
d or t [nm] | 120 | 150 | 170 | 190 | 220 | 150 | 170 | 190 | 220 | 260 |
krpm | 2.5 | 2.2 | 2 | 1.8 | 1.6 | 1.5 | 1 | 0.8 | 0.6 | 0.4 |
Sample | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
m | 2 | 3 | 4 | ||||||
d/nm | 120 | 150 | 170 | 120 | 150 | 170 | 190 | 190 | 220 |
t/nm | 150 | 170 | 190 | 150 | 170 | 190 | 220 | 260 | 260 |
Λ/nm | 355 | 350 | 345 | 530 | 520 | 515 | 675 | 685 | 670 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Niu, L.; Hayat, A.; Cao, F.; Zhai, T.; Zhang, X. Operating Characteristics of High-Order Distributed Feedback Polymer Lasers. Polymers 2019, 11, 258. https://doi.org/10.3390/polym11020258
Zhou P, Niu L, Hayat A, Cao F, Zhai T, Zhang X. Operating Characteristics of High-Order Distributed Feedback Polymer Lasers. Polymers. 2019; 11(2):258. https://doi.org/10.3390/polym11020258
Chicago/Turabian StyleZhou, Puxi, Lianze Niu, Anwer Hayat, Fengzhao Cao, Tianrui Zhai, and Xinping Zhang. 2019. "Operating Characteristics of High-Order Distributed Feedback Polymer Lasers" Polymers 11, no. 2: 258. https://doi.org/10.3390/polym11020258
APA StyleZhou, P., Niu, L., Hayat, A., Cao, F., Zhai, T., & Zhang, X. (2019). Operating Characteristics of High-Order Distributed Feedback Polymer Lasers. Polymers, 11(2), 258. https://doi.org/10.3390/polym11020258