Functionalization of Neutral Polypropylene by Using Low Pressure Plasma Treatment: Effects on Surface Characteristics and Adhesion Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Surface Treatment
2.2. Surface Characterization
- peak radius of curvature <10 nm;
- tip height between 10 and 15 μm;
- material: silicon doped with an aluminum layer, to increase the signal of reflectivity.
2.3. Adhesive-Joint Manufacturing and Lap-Shear Tests
3. Results and Discussion
3.1. Surface Wettability
3.2. Surface Chemistry
3.3. Surface Morphology
3.4. Lap-Shear Strength
4. Conclusions
- Plasma treatments significantly decreased the water contact angle of the polymer surfaces, especially pronounced for specific parameter sets. Consequently, LPP increased the surface free energy of PP compared to that of untreated samples, mainly thanks to an increase of the polar component rather than the dispersive one.
- Oxygen-containing functional groups were formed on the treated surfaces due to ionization of both working gases, which are the principal cause of the improved wettability.
- The analysis of the treated samples using AFM revealed that changes in surface morphology using LPP treatments are considerable only for specific sets-up;
- The main surface modifications, which affect mechanical characteristics of bonded joints, are the insertion of polar species on the polypropylene substrate surfaces.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Agarwal, S.; Arisman, R.K.; Baghdachi, J.; Benson, R.; Belcher, S.L.; Berry, M.; Cantor, K.M.; Carroll, W.F.; Coleman, E.A.; Coutinho, C.; et al. Applied Plastics Engineering Handbook; William Andrew Publishing: Oxford, UK, 2011; ISBN 9781437735147. [Google Scholar]
- Platt, D.K. Industrial Applications for Engineering and High Performance Plastics. In Engineering and High Performance Plastics-Market Report; Smithers Rapra Technology: Shawbury, UK; Shrewsbury, UK; Shropshire, UK, 2003; pp. 55–83. [Google Scholar]
- Jofre-Reche, J.A.; Pulpytel, J.; Fakhouri, H.; Arefi-Khonsari, F.; Martín-Martínez, J.M. Surface treatment of polydimethylsiloxane (PDMS) with atmospheric pressure rotating plasma jet. Modeling and optimization of the surface treatment conditions. Plasma Process. Polym. 2016, 13, 459–469. [Google Scholar] [CrossRef]
- Belmonte, G.K.; Charles, G.; Strumia, M.C.; Weibel, D.E. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation. Appl. Surf. Sci. 2016, 382, 93–100. [Google Scholar] [CrossRef]
- Juang, R.S.; Hou, W.T.; Huang, Y.C.; Tseng, Y.C.; Huang, C. Surface hydrophilic modifications on polypropylene membranes by remote methane/oxygen mixture plasma discharges. J. Taiwan Inst. Chem. Eng. 2016, 65, 420–426. [Google Scholar] [CrossRef]
- Packham, D.E. Surface energy, surface topography and adhesion. Int. J. Adhes. Adhes. 2003, 23, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Petasch, W.; Rauchle, E.; Walker, M.; Elsner, P. Improvement of the adhesion of low-energy polymers by a short-time plasma treatment. Surf. Coat. Technol. 1995, 75, 682–688. [Google Scholar] [CrossRef]
- Encinas, N.; Díaz-Benito, B.; Abenojar, J.; Martínez, M.A. Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surf. Coat. Technol. 2010, 205, 396–402. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. ASTM D2093-03. Standard Practice for Preparation of Surfaces of Plastics Prior to Adhesive; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- Wegman, R.F. Surface Preparation Techniques for Adhesive Bonding; Noyes Publication: Westwood, NJ, USA, 2006. [Google Scholar]
- Hetemi, D.; Pinson, J. Surface functionalisation of polymers. Chem. Soc. Rev. 2017, 46, 5701–5713. [Google Scholar] [CrossRef]
- Encinas, N.; Dillingham, R.G.; Oakley, B.R.; Abenojar, J.; Martínez, M.A.; Pantoja, M. Atmospheric pressure plasma hydrophilic modification of a silicone surface. J. Adhes. 2012, 88, 321–336. [Google Scholar] [CrossRef]
- Mandolfino, C.; Lertora, E.; Gambaro, C.; Bruno, M. Improving adhesion performance of polyethylene surfaces by cold plasma treatment. Meccanica 2014, 49, 2299–2306. [Google Scholar] [CrossRef]
- Sanchis, M.R.; Blanes, V.; Blanes, M.; Garcia, D.; Balart, R. Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. Eur. Polym. J. 2006, 42, 1558–1568. [Google Scholar] [CrossRef]
- Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, a. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coatings Technol. 2013, 233, 99–107. [Google Scholar] [CrossRef]
- ASTM International. ASTM D3163-01. Standard Test Method for Strength Properties of Adhesively Bonded Plastic Lap-Shear Joints in Shear by Tension Loading; ASTM International: West Conshohocken, PA, USA, 2001. [Google Scholar]
- Thakur, V.K.; Vennerberg, D.; Kessler, M.R. Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl. Mater. Interfaces 2014, 6, 9349–9356. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Griffiths, B. Surface Finish Characterization. In Manufacturing Surface Technology: Surface Integrity and Functional Performance; Butterworth-Heinemann: Oxford, UK, 2001; pp. 109–151. ISBN 978-1-85718-029-9. [Google Scholar]
- Kirch, W. (Ed.) Pearson’s Correlation Coefficient. In Encyclopedia of Public Health; Springer: Dordrecht, The Netherlands, 2008; pp. 1090–2013. ISBN 978-1-4020-5614-7. [Google Scholar]
- Chang, Y.; Yang, D.; Guo, Y. Laser ultrasonic damage detection in coating-substrate structure via Pearson correlation coefficient. Surf. Coat. Technol. 2018, 353, 339–345. [Google Scholar] [CrossRef]
- Chen, W.X.; Yu, J.S.; Hu, W.; Chen, G.L. Partial hydrophilic modification of biaxially oriented polypropylene film by an atmospheric pressure plasma jet with the allylamine monomer. Appl. Surf. Sci. 2016, 387, 957–964. [Google Scholar] [CrossRef]
- Pandiyaraj, K.N.; Selvarajan, V.; Deshmukh, R.R.; Gao, C. Modification of surface properties of polypropylene (PP) film using DC glow discharge air plasma. Appl. Surf. Sci. 2009, 255, 3965–3971. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Q.; Wan, H.; Yi, J.; Wei, Y.; Liu, P. Surface modification and biocompatible improvement of polystyrene film by Ar, O2 and Ar+O2 plasma. Appl. Surf. Sci. 2013, 265, 452–457. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Leys, C.; Gengembre, L.; Payen, E. Comparison between XPS- And FTIR-analysis of plasma-treated polypropylene film surfaces. Surf. Interface Anal. 2008, 40, 597–600. [Google Scholar] [CrossRef]
- Mandolfino, C.; Lertora, E.; Gambaro, C. Influence of cold plasma treatment parameters on the mechanical properties of polyamide homogeneous bonded joints. Surf. Coat. Technol. 2017, 313, 222–229. [Google Scholar] [CrossRef]
- Van der Heide, P. X-ray Photoelectron Spectroscopy: An Introduction to Principles and Practices; John Wiley &Sons: Hoboken, NJ, USA, 2011; ISBN 9781118062531. [Google Scholar]
- Hnilica, J.; Potočňáková, L.; Stupavská, M.; Kudrle, V. Rapid surface treatment of polyamide 12 by microwave plasma jet. Appl. Surf. Sci. 2014, 288, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Fombuena, V.; Balart, J.; Boronat, T.; Sánchez-Nácher, L.; Garcia-Sanoguera, D. Improving mechanical performance of thermoplastic adhesion joints by atmospheric plasma. Mater. Des. 2013, 47, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Slepic, P.; Bla, O.; Kota, V.; Sajdl, P.; Hnatowicz, V. Modification of surface properties of polyethylene by Ar plasma discharge. Nucl. Instrum. Methods Phys. Res. B 2006, 244, 365–372. [Google Scholar]
- Gao, Z.; Sun, J.; Peng, S.; Yao, L.; Qiu, Y. Surface modification of a polyamide 6 film by He/CF4 plasma using atmospheric pressure plasma jet. Appl. Surf. Sci. 2009, 256, 1496–1501. [Google Scholar] [CrossRef]
- Baldan, A. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment. J. Mater. Sci. 2004, 39, 1–49. [Google Scholar] [CrossRef]
- Encinas, N.; Abenojar, J.; Martinez, M. Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications. Int. J. Adhes. Adhes. 2012, 33, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Navaneetha Pandiyaraj, K.; Selvarajan, V.; Deshmukh, R.R.; Gao, C. Adhesive properties of polypropylene (PP) and polyethylene terephthalate (PET) film surfaces treated by DC glow discharge plasma. Vacuum 2008, 83, 332–339. [Google Scholar] [CrossRef]
- Oosterom, R.; Ahmed, T.J.; Poulis, J.A.; Bersee, H.E.N. Adhesion performance of UHMWPE after different surface modification techniques. Med. Eng. Phys. 2006, 28, 323–330. [Google Scholar] [CrossRef]
Mechanical Properties | Value |
---|---|
Yield stress (MPa) | 25 |
Elongation at break (%) | 6 |
Tensile modulus of elasticity (MPa) | 1300 |
Charpy impact strength (kJ/m2) | 13 |
Rockwell hardness (R scale) | 85 |
Liquid | |||
---|---|---|---|
Water | 21.8 | 51 | 72.8 |
Diiodomethane (DIM) | 50.8 | 0 | 51 |
Treatment | Concentration [at. %] | Relationships | Contribution of C1s components (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Power Input | Time | Gas | O1s | C1s | N1s | O/C ratio | N/C ratio | C–C C–H | C–N C–OH | C–O | C–O–C | O–C=O | C=O |
0 | 0 | 0 | 5.70 | 91.96 | 0.26 | 0.062 | 0.046 | 95.7 | - | - | - | - | 4.3 |
50 | 180 | Air | 16.25 | 73.98 | 2.03 | 0.220 | 0.125 | 67.31 | 16.01 | 7.48 | 2.04 | 3.11 | 4.05 |
50 | Oxygen | 12.93 | 82.94 | 1.13 | 0.156 | 0.087 | 67.1 | 16.48 | 6.98 | 3.21 | 2.75 | 3.48 | |
125 | 180 | Air | 13.12 | 79.78 | 1.09 | 0.164 | 0.083 | 73.81 | 10.85 | 5.69 | 3.33 | 3.07 | 3.26 |
125 | Oxygen | 12.00 | 84.24 | 0.71 | 0.142 | 0.059 | 67.45 | 14.44 | 7.39 | 3.65 | 3.24 | 3.83 | |
200 | 180 | Air | 11.44 | 83.22 | 0.89 | 0.137 | 0.078 | 71.56 | 13.24 | 5.3 | 3.24 | 3.47 | 3.19 |
200 | Oxygen | 11.12 | 85.17 | 0.53 | 0.131 | 0.048 | 67.18 | 15.57 | 7.76 | 3.82 | 2.56 | 3.11 |
Parameter | Working Gas | |
---|---|---|
Air | Oxygen | |
Power input | −0.798 | −0.894 |
Time | −0.257 | 0.028 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandolfino, C.; Lertora, E.; Gambaro, C.; Pizzorni, M. Functionalization of Neutral Polypropylene by Using Low Pressure Plasma Treatment: Effects on Surface Characteristics and Adhesion Properties. Polymers 2019, 11, 202. https://doi.org/10.3390/polym11020202
Mandolfino C, Lertora E, Gambaro C, Pizzorni M. Functionalization of Neutral Polypropylene by Using Low Pressure Plasma Treatment: Effects on Surface Characteristics and Adhesion Properties. Polymers. 2019; 11(2):202. https://doi.org/10.3390/polym11020202
Chicago/Turabian StyleMandolfino, Chiara, Enrico Lertora, Carla Gambaro, and Marco Pizzorni. 2019. "Functionalization of Neutral Polypropylene by Using Low Pressure Plasma Treatment: Effects on Surface Characteristics and Adhesion Properties" Polymers 11, no. 2: 202. https://doi.org/10.3390/polym11020202
APA StyleMandolfino, C., Lertora, E., Gambaro, C., & Pizzorni, M. (2019). Functionalization of Neutral Polypropylene by Using Low Pressure Plasma Treatment: Effects on Surface Characteristics and Adhesion Properties. Polymers, 11(2), 202. https://doi.org/10.3390/polym11020202