Next Article in Journal
Synthesis and Structural Characterization of a Series of One-Dimensional Heteronuclear Dirhodium-Silver Coordination Polymers
Next Article in Special Issue
Resistance to Cleavage of Core–Shell Rubber/Epoxy Composite Foam Adhesive under Impact Wedge–Peel Condition for Automobile Structural Adhesive
Previous Article in Journal
Starch-Based Pickering Emulsions as Platforms for Topical Antibiotic Delivery: In Vitro and In Vivo Studies
Previous Article in Special Issue
Extrusion Foaming of Lightweight Polystyrene Composite Foams with Controllable Cellular Structure for Sound Absorption Application
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Polymers 2019, 11(1), 109;

Segregation versus Interdigitation in Highly Dynamic Polymer/Surfactant Layers

Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
Science and Technology Facilities Council, ISIS Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK
Institut Laue Langevin ILL, 6 rue Jules Horowitz, 38000 Grenoble, France
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3TB, UK
Author to whom correspondence should be addressed.
Received: 12 December 2018 / Revised: 23 December 2018 / Accepted: 28 December 2018 / Published: 10 January 2019
(This article belongs to the Special Issue Polymeric Foams)
PDF [1801 KB, uploaded 10 January 2019]


Many polymer/surfactant formulations involve a trapped kinetic state that provides some beneficial character to the formulation. However, the vast majority of studies on formulations focus on equilibrium states. Here, nanoscale structures present at dynamic interfaces in the form of air-in-water foams are explored, stabilised by mixtures of commonly used non-ionic, surface active block copolymers (Pluronic®) and small molecule ionic surfactants (sodium dodecylsulfate, SDS, and dodecyltrimethylammonium bromide, C12TAB). Transient foams formed from binary mixtures of these surfactants shows considerable changes in stability which correlate with the strength of the solution interaction which delineate the interfacial structures. Weak solution interactions reflective of distinct coexisting micellar structures in solution lead to segregated layers at the foam interface, whereas strong solution interactions lead to mixed structures both in bulk solution, forming interdigitated layers at the interface. View Full-Text
Keywords: Pluronic; surfactants; foams; SANS; multilayers Pluronic; surfactants; foams; SANS; multilayers

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Mansour, O.T.; Cattoz, B.; Beaube, M.; Heenan, R.K.; Schweins, R.; Hurcom, J.; Griffiths, P.C. Segregation versus Interdigitation in Highly Dynamic Polymer/Surfactant Layers. Polymers 2019, 11, 109.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top