Heterogeneous Catalytic Composites from Palladium Nanoparticles in Montmorillonite Intercalated with Poly (Vinyl Pyrrolidone) Chains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MMT/PVP Supports and Pd@MMT/PVP Catalytic Composite
2.3. Characterizations of the MMT/PVP Supports and Pd@MMT/PVP Catalytic Composite
2.4. Catalytic Performance of the Pd@MMT/PVP Catalytic Composite
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heck, R.F.; Nolley, J.P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 1972, 37, 2320–2322. [Google Scholar] [CrossRef]
- Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of olefin with aryl iodide catalyzed by palladium. Bull. Chem. Soc. Jpn. 1971, 44, 581. [Google Scholar] [CrossRef]
- Yin, L.; Liebscher, L.J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 2007, 107, 133–173. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Inuki, S. Recent progress in palladium-catalyzed cascade cyclizations for natural product synthesis. Synth. Stuttg. 2018, 50, 700–710. [Google Scholar] [CrossRef]
- Heravi, M.M.; Moradi, R.; Malmir, M. Recent advances in the application of the heck reaction in the synthesis of heterocyclic compounds: An update. Curr. Org. Chem. 2018, 22, 165–198. [Google Scholar] [CrossRef]
- Budarin, V.L.; Shuttleworth, P.S.; Clark, J.H.; Luque, R. Industrial applications of C-C coupling reactions. Curr. Org. Chem. 2010, 7, 614–627. [Google Scholar] [CrossRef]
- Qureshi, Z.; Weinstabl, H.; Suhartono, M.; Liu, H.Q.; Thesmar, P.; Lautens, M. Application of the palladium-catalysed norbornene-assisted catellani reaction towards the total synthesis of (+)-linoxepin and isolinoxepin. Eur. J. Org. Chem. 2014, 19, 4053–4069. [Google Scholar] [CrossRef]
- Vulovic, B.; Watson, D.A. Heck-like reactions involving heteroatomic electrophiles. Eur. J. Org. Chem. 2017, 34, 4996–5009. [Google Scholar] [CrossRef] [PubMed]
- Torborg, C.; Beller, M. Recent Applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal. 2009, 351, 3027–3043. [Google Scholar] [CrossRef]
- Biffis, A.; Centomo, P.; Del Zotto, A.; Zeccal, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A critical review. Chem. Rev. 2018, 118, 2249–2295. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Issaabadi, Z.; Tohidi, M.M.; Sajadi, S.M. Recent progress in application of graphene supported metal nanoparticles in C-C and C-X coupling reactions. Chem. Rec. 2018, 18, 165–229. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Uozumi, Y. Recent advances in palladium-catalyzed cross-coupling reactions at ppm to ppb molar catalyst loadings. Adv. Synth. Catal. 2018, 360, 602–625. [Google Scholar] [CrossRef]
- Balanta, A.; Godard, C.; Claver, C. Pd nanoparticles for C-C coupling reactions. Chem. Soc. Rev. 2011, 40, 4973–4985. [Google Scholar] [CrossRef] [PubMed]
- Lamblin, M.; Nassar-Hardy, L.; Hierso, J.C.; Fouquet, E.; Felpin, F.X. Recyclable heterogeneous palladium catalysts in pure water: Sustainable developments in Suzuki, Heck, Sonogashira and Tsuji–Trost reactions. Adv. Synth. Catal. 2010, 352, 33–79. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Atarod, M.; Alizadeh, M.; Hatamifard, A.; Sajadi, S.M. Recent advances in the application of heterogeneous nanocatalysts for sonogashira coupling reactions. Curr. Org. Chem. 2017, 21, 708–749. [Google Scholar] [CrossRef]
- Tang, Z.; Shen, S.; Zhuang, J.; Wang, X. Noble-metal-promoted three-dimensional macro assembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 2010, 49, 4603–4607. [Google Scholar] [CrossRef] [PubMed]
- Movassagh, B.; Parvis, F.S.; Navidi, M. Pd(II) salen complex covalently anchored to multi-walled carbon nanotubes as a heterogeneous and reusable precatalyst for Mizoroki–Heck and Hiyama cross-coupling reactions. Appl. Organomet. Chem. 2015, 29, 40–44. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Len, C.; Fihri, A. Silica-supported palladium: Sustainable catalysts for cross-coupling reactions. Coord. Chem. Rev. 2009, 253, 2599–2626. [Google Scholar] [CrossRef]
- Veerakumar, P.; Thanasekaran, P.; Lu, K.-L.; Liu, S.B.; Rajagopal, S. Computational studies of versatile heterogeneous palladium-catalyzed Suzuki, Heck, and Sonogashira coupling reactions. ACS Sustain. Chem. Eng. 2017, 5, 6357–6376. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Azarian, A.; Ehsani, A.; Khalaj, M. Preparation, optical properties and catalytic activity of TiO2@ Pd nanoparticles as heterogeneous and reusable catalysts for ligand-free Heck coupling reactions. J. Mol. Catal. A Chem. 2014, 394, 205–210. [Google Scholar] [CrossRef]
- Martinez-Klimov, M.E.; Hernandez-Hipolito, P.; Klimova, T.E.; Solis-Casados, D.A.; Martinez-Garcia, M. Development of reusable palladium catalysts supported on hydrogen titanate nanotubes for the Heck reaction. J. Catal. 2016, 342, 138–150. [Google Scholar] [CrossRef]
- Veisi, H.; Sedrpoushan, A.; Hemmati, S. Palladium supported on diaminoglyoxime-functionalized Fe3O4 nanoparticles as a magnetically separable nanocatalyst in Heck coupling reaction. Appl. Organomet. Chem. 2015, 29, 825–828. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Akbari, S.; Jeddi, N. Palladium nanoparticles supported on agarose-functionalized magnetic nanoparticles of Fe3O4 as a recyclable catalyst for C–C bond formation via Suzuki–Miyaura, Heck–Mizoroki and Sonogashira–Hagihara coupling reactions. RSC Adv. 2014, 4, 17060–17070. [Google Scholar] [CrossRef]
- Martinez, A.V.; Leal-Duaso, A.; Garcia, J.I.; Mayoral, J.A. An extremely highly recoverable clay-supported Pd nanoparticle catalyst for solvent-free Heck–Mizoroki reactions. RSC Adv. 2015, 5, 59983–59990. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Ratti, R.; Kaur, S. Synthesis and characterization of recyclable and recoverable MMT-clay exchanged ammonium tagged carbapalladacycle catalyst for Mizoroki–Heck and Sonogashira reactions in ionic liquid media. J. Mol. Catal. A Chem. 2011, 334, 13–19. [Google Scholar] [CrossRef]
- Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci. 2005, 30, 71–109. [Google Scholar] [CrossRef]
- El Kadib, A. Chitosan as a sustainable organocatalyst: A concise overview. ChemSusChem 2015, 8, 217–244. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, E.; Movassagh, B. Synthesis of polystyrene-supported Pd(II)-NHC complex derived from theophylline as an efficient and reusable heterogeneous catalyst for the Heck-Matsuda cross-coupling reaction. J. Mol. Catal. A Chem. 2016, 418, 158–167. [Google Scholar] [CrossRef]
- Mitsudome, T.; Nose, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Montmorillonite-entrapped sub-nanoordered Pd clusters as a heterogeneous catalyst for allylic substitution reactions. Angew. Chem. Int. Ed. 2007, 46, 3288–3290. [Google Scholar] [CrossRef] [PubMed]
- Borah, B.J.; Dutta, D.K. In situ stabilization of Pd0-nanoparticles into the nanopores of modified montmorillonite: Efficient heterogeneous catalysts for Heck and Sonogashira coupling. J. Mol. Catal. A Chem. 2013, 366, 202–209. [Google Scholar] [CrossRef]
- Zhou, L.M.; Qi, X.L.; Jiang, X.H.; Zhou, Y.F.; Fu, H.Y.; Chen, H. Organophilic worm-like ruthenium nanoparticles catalysts by the modification of CTAB on montmorillonite supports. J. Colloid Interface Sci. 2013, 392, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.F.; Wang, Y.D.; Liu, Q.; Yuan, X.; Zuo, S.F.; Feng, R.K.; Yang, J.; Wang, B.Y.; Qi, C.Z.; Lin, Y. Encaging palladium nanoparticles in chitosan modified montmorillonite for efficient, recyclable catalysts. ACS Appl. Mater. Interface 2016, 8, 33157–33164. [Google Scholar] [CrossRef] [PubMed]
- Sinha Ray, S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Ott, L.S.; Hornstein, B.J.; Finke, R.G. A test of the transition-metal nanocluster formation and stabilization ability of the most common polymeric stabilizer, poly (vinyl pyrrolidone), as well as four other polymeric protectants. Langmuir 2006, 22, 9357–9367. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, R.; El-Sayed, M.A. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc. 2003, 125, 8340–8347. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Rioux, R.M.; Hoefelmeyer, J.D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P.; Somorjai, G.A. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 2006, 128, 3027–3037. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.P.; Bai, J.; Li, C.P.; Meng, Q.R.; Liang, H.O.; Sun, W.Y.; Li, H.Q.; Liu, H. A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: Synthesis, characterization and efficient catalysis. Appl. Surf. Sci. 2013, 283, 107–114. [Google Scholar] [CrossRef]
- Jiang, C.L.; Nie, J.; Ma, G.P. A polymer/metal core–shell nanofiber membrane by electrospinning with an electric field, and its application for catalyst support. RSC Adv. 2016, 6, 22996–23007. [Google Scholar] [CrossRef]
- Papp, S.; Patakfalvi, R.; Dékány, I. Metal nanoparticle formation on layer silicate lamellae. Colloid Polym. Sci. 2008, 286, 3–14. [Google Scholar] [CrossRef]
- Papp, S.; Szél, J.; Oszkó, A.; Dékány, I. Synthesis of polymer-stabilized nanosized rhodium particles in the interlayer space of layered silicates. Chem. Mater. 2004, 16, 1674–1685. [Google Scholar] [CrossRef]
- Papp, S.; Dékány, I. Stabilization of palladium nanoparticles by polymers and layer silicates. Colloid Polym. Sci. 2003, 281, 727–737. [Google Scholar] [CrossRef]
- Zeng, M.F.; Du, Y.J.; Qi, C.Z.; Zuo, S.F.; Li, X.D.; Shao, L.J.; Zhang, X.-M. An efficient and recyclable heterogeneous palladium catalyst utilizing naturally abundant pearl shell waste. Green Chem. 2011, 13, 350–356. [Google Scholar] [CrossRef]
- Darder, M.; Colilla, M.; Ruiz-Hitzky, E. Biopolymer−clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater. 2003, 15, 3774–3780. [Google Scholar] [CrossRef]
- Komori, Y.; Sugahara, Y.; Kuroda, K. Direct intercalation of poly (vinyl pyrrolidone) into kaolinite by a refined guest displacement method. Chem. Mater. 1999, 11, 3–18. [Google Scholar] [CrossRef]
- Kerr, T.A.; Wu, H.; Nazar, L.F. Concurrent polymerization and insertion of aniline in molybdenum trioxide: Formation and properties of a [poly(aniline)]0.24 MoO3 nanocomposite. Chem. Mater. 1996, 8, 2005–2015. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Mullenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer: Waltham, MA, USA, 1979. [Google Scholar]
- Pethrick, R.A. Positron annihilation—A probe for nanoscale voids and free volume? Prog. Polym. Sci. 1997, 22, 1–47. [Google Scholar] [CrossRef]
- Jean, Y.C. Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers. Microchem. J. 1990, 42, 72–102. [Google Scholar] [CrossRef]
- Jean, Y.C.; Van Horn, J.D.; Hung, W.S.; Lee, K.R. Perspective of positron annihilation spectroscopy in polymers. Macromolecules 2013, 46, 7133–7145. [Google Scholar] [CrossRef]
- Tao, S.J. Positronium annihilation in molecular substances. J. Chem. Phys. 1972, 56, 5499–5510. [Google Scholar] [CrossRef]
- Eldrup, M.; Lightbody, D.; Sherwood, J.N. The temperature-dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 1981, 63, 51–58. [Google Scholar] [CrossRef]
Sample | τ1 (ns) | I1 (%) | τ2 (ns) | I2 (%) | τ3 (ns) | I3 (%) | D (nm) |
---|---|---|---|---|---|---|---|
MMT | 0.2356 | 63.7 | 0.5125 | 33.2 | 2.806 | 3.1 | 0.6988 |
MMT/PVP (90/10) | 0.1977 | 51.6 | 0.449 | 43.3 | 2.213 | 5.1 | 0.6072 |
MMT/PVP (80/20) | 0.2025 | 57.3 | 0.4755 | 36.3 | 2.208 | 6.4 | 0.6062 |
MMT/PVP (70/30) | 0.1881 | 56.6 | 0.4591 | 35.9 | 2.114 | 7.5 | 0.5900 |
MMT/PVP (60/40) | 0.1908 | 52.4 | 0.4633 | 37.8 | 2.006 | 9.8 | 0.5708 |
MMT/PVP (50/50) | 0.1796 | 50.7 | 0.4278 | 38.5 | 1.928 | 10.8 | 0.5562 |
Pd2+@MMT/PVP (80/20) | 0.1861 | 63.2 | 0.4364 | 30.8 | 2.265 | 6.0 | 0.6158 |
Pd0@MMT/PVP (80/20) | 0.2007 | 55.6 | 0.431 | 40.4 | 2.295 | 4.0 | 0.6208 |
Entry | Aryl Halides | Acrylates or Alkenes | Products | Yield b |
---|---|---|---|---|
1 | 94% | |||
2 | 93% | |||
3 | 89% | |||
4 | 87% | |||
5 | 90% | |||
6 | 89% | |||
7 | 87% | |||
8 | 93% | |||
9 | 90% | |||
10 | 89% | |||
11 | trace | |||
12 | trace | |||
13 | 44% | |||
14 | 47% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Zhao, J.; Shu, G.; Liu, Q.; Zeng, M. Heterogeneous Catalytic Composites from Palladium Nanoparticles in Montmorillonite Intercalated with Poly (Vinyl Pyrrolidone) Chains. Polymers 2018, 10, 669. https://doi.org/10.3390/polym10060669
Xu M, Zhao J, Shu G, Liu Q, Zeng M. Heterogeneous Catalytic Composites from Palladium Nanoparticles in Montmorillonite Intercalated with Poly (Vinyl Pyrrolidone) Chains. Polymers. 2018; 10(6):669. https://doi.org/10.3390/polym10060669
Chicago/Turabian StyleXu, Mengdie, Jing Zhao, Guiqing Shu, Qi Liu, and Minfeng Zeng. 2018. "Heterogeneous Catalytic Composites from Palladium Nanoparticles in Montmorillonite Intercalated with Poly (Vinyl Pyrrolidone) Chains" Polymers 10, no. 6: 669. https://doi.org/10.3390/polym10060669
APA StyleXu, M., Zhao, J., Shu, G., Liu, Q., & Zeng, M. (2018). Heterogeneous Catalytic Composites from Palladium Nanoparticles in Montmorillonite Intercalated with Poly (Vinyl Pyrrolidone) Chains. Polymers, 10(6), 669. https://doi.org/10.3390/polym10060669