Solvate Formation of Bis(demethoxy)curcumin: Screening and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Powdered Solvates
2.3. Powder X-ray Diffraction (PXRD)
2.4. Temperature-Resolved Powder X-ray Diffraction (TR-PXRD)
2.5. Thermal Analyses
2.6. Hot-Stage Microscopy (HSM)
3. Results and Discussion
3.1. Solvate Screening
3.2. Desolvation of BDMC Solvates
3.2.1. Temperature-Resolved Powder X-ray Diffraction
3.2.2. Thermogravimetric Analysis and Differential Scanning Calorimetry
3.2.3. Estimation of the Binding Energy
3.2.4. Hot-Stage Microscopy
3.3. Comparison of the Desolvation Temperatures of BDMC Solvates
3.4. Stability of BDMC Solvates at Ambient Conditions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Surov, A.O.; Solanko, K.A.; Bond, A.D.; Bauer-Brandl, A.; Perlovich, G.L. Diversity of felodipine solvates: Structure and physicochemical properties. CrystEngComm 2015, 17, 4089–4097. [Google Scholar] [CrossRef]
- Griesser, U.J. The importance of solvates. In Polymorphism: In the Pharmaceutical Industry; Hilfiker, R., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 211–233. ISBN 3-527-31146-7. [Google Scholar]
- Maini, L.; Braga, D.; Farinella, F.; Melotto, E.; Verzini, M.; Brescello, R.; Michieletto, I.; Munari, I. Crystal forms of enzalutamide and a crystal engineering route to drug purification. Cryst. Growth Des. 2018, 18, 3774–3780. [Google Scholar] [CrossRef]
- Wirth, D.D.; Stephenson, G.A. Purification of dirithromycin. Impurity reduction and polymorph manipulation. Org. Process Res. Dev. 1997, 1, 55–60. [Google Scholar] [CrossRef]
- Tieger, E.; Kiss, V.; Pokol, G.; Finta, Z.; Rohlíček, J.; Skořepová, E.; Dušeke, M. Rationalization of the formation and stability of bosutinib solvated forms. CrystEngComm 2016, 18, 9260–9274. [Google Scholar] [CrossRef] [Green Version]
- Rocco, W.L.; Morphet, C.; Laughlin, S.M. Solid-state characterization of zanoterone. Int. J. Pharm. 1995, 122, 17–25. [Google Scholar] [CrossRef]
- Schmidt, A.C.; Niederwanger, V.; Griesser, U.J. Solid-state forms of prilocaine hydrochloride. J. Therm. Anal. Calorim. 2004, 77, 639–652. [Google Scholar] [CrossRef]
- Sekiguchi, K.; Horikoshi, I.; Himuro, I. Studies on the method of size reduction of medicinal compounds. III. Size reduction of griseofulvin by solvation and desolvation method using chloroform. Chem. Pharm. Bull. 1968, 16, 2495–2502. [Google Scholar] [CrossRef] [PubMed]
- Mahady, G.B.; Pendland, S.L.; Yun, G.; Lu, Z.Z. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, A group 1 carcinogen. Anticancer Res. 2002, 22, 4179–4181. [Google Scholar] [PubMed]
- Sugiyama, Y.; Kawakishi, S.; Osawa, T. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem. Pharmacol. 1996, 52, 519–525. [Google Scholar] [CrossRef]
- Sanphui, P.; Goud, N.R.; Khandavilli, U.B.R.; Bhanoth, S.; Nangia, A. New polymorphs of curcumin. Chem. Commun. 2011, 47, 5013–5015. [Google Scholar] [CrossRef] [PubMed]
- Jordan, W.C.; Drew, C.R. Curcumin—A natural herb with anti-HIV activity. J. Natl. Med. Assoc. 1996, 88, 333–335. [Google Scholar] [PubMed]
- Sanphui, P.; Goud, N.R.; Khandavilli, U.B.R.; Nangia, A. Fast dissolving curcumin cocrystals. Cryst. Growth Des. 2011, 11, 4135–4145. [Google Scholar] [CrossRef]
- Poornima, B.; Prasad, K.V.S.R.G.; Bharathi, K. Evaluation of solid-state forms of curcuminoids. Int. J. Pharm. Sci. Res. 2016, 7, 4035–4044. [Google Scholar] [CrossRef]
- Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 2007, 28, 1765–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suresh, K.; Nangia, A. Curcumin: Pharmaceutical solids as a platform to improve solubility and bioavailability. CrystEngComm 2018, 20, 3277–3296. [Google Scholar] [CrossRef]
- Ukrainczyk, M.; Hodnett, B.K.; Rasmuson, A.C. Process parameters in the purification of curcumin by cooling crystallization. Org. Process Res. Dev. 2016, 20, 1593–1602. [Google Scholar] [CrossRef]
- Péret-Almeida, L.; Cherubino, A.P.F.; Alves, R.J.; Dufossé, L.; Glória, M.B.A. Separation and determination of the physico-chemical characteristics of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Res. Int. 2005, 38, 1039–1044. [Google Scholar] [CrossRef]
- Ruby, A.J.; Kuttan, G.; Babu, K.D.; Rajasekharan, K.N.; Kuttan, R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 1995, 94, 79–83. [Google Scholar] [CrossRef]
- Syu, W.-J.; Shen, C.-C.; Don, M.-J.; Ou, J.-C.; Lee, G.-H.; Sun, C.-M. Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J. Nat. Prod. 1998, 61, 1531–1534. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, J.; Mostad, A.; Tønnesen, H.H. Structural studies of curcuminoids. VI. Crystal structure of 1,7-bis(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione hydrate. Acta Chem. Scand. B 1988, 42, 23–27. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Karlsen, J.; Mostad, A.; Pedersen, U.; Rasmussen, P.B.; Lawesson, S.-O. Structural studies of curcuminoids. II. Crystal structure of 1,7-bis(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione methanol complex. Acta Chem. Scand. B 1983, 37, 179–185. [Google Scholar] [CrossRef]
- Kasai, K.; Saito, A.; Sato, S. Crystal structure and pseudopolymorphism of bisdemethoxycurcumin-alcohol solvates. Bull. Miyagi Univ. Educ. 2017, 51, 83–88. [Google Scholar]
- Chava, S.; Gorantla, S.R.A.; Muppidi, V.K. Solid forms of curcumin and derivatives thereof. WO2015052568A2, 16 April 2015. [Google Scholar]
- Tauvel, G.; Sanselme, M.; Coste-Leconte, S.; Petit, S.; Coquerel, G. Structural studies of several solvated potassium salts of tenatoprazole crystallizing as conglomerates. J. Mol. Struct. 2009, 936, 60–66. [Google Scholar] [CrossRef]
- Braun, D.E.; Kahlenberg, V.; Gelbrich, T.; Ludescher, J.; Griesser, U.J. Solid state characterisation of four solvates of R-cinacalcet hydrochloride. CrystEngComm 2008, 10, 1617–1625. [Google Scholar] [CrossRef]
- Ahuja, D.; Bannigan, P.; Rasmuson, A.C. Study of three solvates of sulfamethazine. CrystEngComm 2017, 19, 6481–6488. [Google Scholar] [CrossRef]
- Bērziņš, A.; Skarbulis, E.; Rekis, T.; Actiņš, A. On the formation of droperidol solvates: Characterization of structure and properties. Cryst. Growth Des. 2014, 14, 2654–2664. [Google Scholar] [CrossRef]
- Zvoníček, V.; Skořepová, E.; Dušek, M.; Babor, M.; Žvátora, P.; Šoóš, M. First crystal structures of pharmaceutical ibrutinib: Systematic solvate screening and characterization. Cryst. Growth Des. 2017, 17, 3116–3127. [Google Scholar] [CrossRef]
- Heffernan, C.; Ukrainczyk, M.; Gamidi, R.K.; Hodnett, B.K.; Rasmuson, A.C. Extraction and purification of curcuminoids from crude curcumin by a combination of crystallization and chromatography. Org. Process Res. Dev. 2017, 21, 821–826. [Google Scholar] [CrossRef]
- Caira, M.R.; Bettinetti, G.; Sorrenti, M.; Catenacci, L. Relationships between structural and thermal properties of anhydrous and solvated crystalline forms of brodimoprim. J. Pharm. Sci. 2007, 96, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Chadha, R.; Arora, P.; Kaur, R.; Saini, A.; Singla, M.L.; Jain, D.S. Characterization of solvatomorphs of methotrexate using thermoanalytical and other techniques. Acta Pharm. 2009, 59, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Chadha, R.; Arora, P.; Saini, A.; Jain, D.S. Solvated crystalline forms of nevirapine: Thermoanalytical and spectroscopic studies. AAPS PharmSciTech. 2010, 11, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Karan, M.; Chadha, R.; Chadha, K.; Arora, P. Identification, characterization and evaluation of crystal forms of quinine sulphate. Pharmacol. Pharm. 2012, 3, 129–138. [Google Scholar] [CrossRef]
Solvent | Boiling Point of Solvent/°C | Relative Polarity of Solvent | Solvate Formation | Solubility of BDMC | PXRD |
---|---|---|---|---|---|
Dichloromethane | 40 | Low- | |||
Acetone (ACET) | 56 | 0.355 | Yes | High+ | √ |
Methyl Acetate | 57 | 0.253 | No | High | √ |
Chloroform | 61 | 0.259 | Low | ||
Methanol (MeOH) | 65 | 0.762 | Yes | High+ | √ |
Tetrahydrofuran (THF) | 66 | 0.207 | Yes | High+ | √ |
n-Hexane | 68 | 0.009 | Low- | ||
Ethyl Acetate | 77 | 0.228 | No | High+ | √ |
Ethanol | 78 | 0.654 | No | High+ | √ |
Benzene | 80 | 0.111 | Low | ||
Acetonitrile | 82 | 0.460 | No | High- | √ |
Isopropanol (IPA) | 83 | 0.546 | Yes | High+ | √ |
n-Heptane | 98 | 0.012 | Low- | ||
Water | 100 | 1.000 | No | ||
1,4-Dioxane (DIO) | 101 | 0.164 | Yes | High | √ |
Toluene | 111 | 0.099 | Low | ||
Acetic Acid | 118 | 0.648 | No | Normal | √ |
Butyl Acetate | 126 | No | High- | √ | |
Dimethyl Sulfoxide (DMSO) | 189 | 0.444 | Yes | High++ | √ |
BDMC Solvate | Boiling Point of Pure Solvent/°C | Desolvation Temperature/°C (DSC) | Mass Loss Upon Desolvation (%) via TGA | Ratio of BDMC:Solvent | ||||
---|---|---|---|---|---|---|---|---|
Onset T/°C | Peak T/°C | |||||||
THF | 66 | 56 | 59 | 4.57 | 65 | 58.21 | 32.47 | 1:0.5 |
78 | 92 | 3.47 | ||||||
DIO | 101 | 56 | 71 | 15.13 | 79 | 23.47 | 38.60 | 1:1.5 |
80 | 89 | 14.49 | ||||||
DMSO | 189 | 118 | 119 | 14.09 | 37 | 71.97 | 52.90 | 1:1 |
BDMC Solvate | TR-PXRD | DSC | HSM | |||
---|---|---|---|---|---|---|
Start T (°C) | End T (°C) | Start T (°C) | End T (°C) | Start T (°C) | End T (°C) | |
THF | 40 | 50 | 56 | 92 | 46 | 48 |
DIO | 70 | 80 | 56 | 89 | / | / |
DMSO | 90 | 100 | 118 | / | / | / |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Lorenz, H. Solvate Formation of Bis(demethoxy)curcumin: Screening and Characterization. Crystals 2018, 8, 407. https://doi.org/10.3390/cryst8110407
Yuan L, Lorenz H. Solvate Formation of Bis(demethoxy)curcumin: Screening and Characterization. Crystals. 2018; 8(11):407. https://doi.org/10.3390/cryst8110407
Chicago/Turabian StyleYuan, Lina, and Heike Lorenz. 2018. "Solvate Formation of Bis(demethoxy)curcumin: Screening and Characterization" Crystals 8, no. 11: 407. https://doi.org/10.3390/cryst8110407
APA StyleYuan, L., & Lorenz, H. (2018). Solvate Formation of Bis(demethoxy)curcumin: Screening and Characterization. Crystals, 8(11), 407. https://doi.org/10.3390/cryst8110407