Synthesis, Crystal Structure, and Luminescent Properties of New Zinc(II) and Cadmium(II) Metal-Organic Frameworks Based on Flexible Bis(imidazol-1-yl)alkane Ligands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Ligands
2.2. Synthesis of Coordination Polymers 1–4
2.3. Crystal Structures of Compounds 1–4
2.4. Luminescence Properties
4. Materials and Methods
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.-H.; Long, J.R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef] [PubMed]
- Adatoz, E.; Avci, A.K.; Keskin, S. Opportunities and challenges of MOF-based membranes in gas separations. Sep. Purif. Technol. 2015, 152, 207–237. [Google Scholar] [CrossRef]
- Lai, Q.; Paskevicius, M.; Sheppard, D.A.; Buckley, C.E.; Thornton, A.W.; Hill, M.R.; Gu, Q.; Mao, J.; Huang, Z.; Liu, H.K.; et al. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem 2015, 8, 2789–2825. [Google Scholar] [CrossRef] [PubMed]
- Butova, V.V.; Soldatov, M.A.; Guda, A.A.; Lomachenko, K.A.; Lamberti, C. Metal-organic frameworks: Structure, properties, synthesis and characterization. Russ. Chem. Rev. 2016, 85, 280–307. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Ma, Y.-H.; Zhang, D.; Li, X.-J.; Zhao, H. Highly efficient electrochemiluminescence based on pyrazolecarboxylic metal organic framework. Dalton Trans. 2016, 45, 5081–5091. [Google Scholar] [CrossRef] [PubMed]
- Mendiratta, S.; Lee, C.-H.; Usman, M.; Lu, K.-L. Metal-organic frameworks for electronics: Emerging second order nonlinear optical and dielectric materials. Sci. Technol. Adv. Mater. 2016, 16, 54204. [Google Scholar] [CrossRef]
- Tai, X.-S.; You, H.-Y. A New 1D Chained Coordination Polymer: Synthesis, Crystal Structure, Antitumor Activity and Luminescent Property. Crystals 2015, 5, 608–616. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef] [PubMed]
- Chughtai, A.H.; Ahmad, N.; Younus, H.A.; Laypkov, A.; Verpoort, F. Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44, 6804–6849. [Google Scholar] [CrossRef] [PubMed]
- Alegre-Requena, J.V.; Marques-Lopez, E.; Herrera, R.P.; Diaz, D.D. Metal-organic frameworks (MOFs) bring new life to hydrogen-bonding organocatalysts in confined spaces. CrystEngComm 2016, 18, 3985–3995. [Google Scholar] [CrossRef]
- Cai, W.; Chu, C.-C.; Liu, G.; Wáng, Y.-X.J. Metal-Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small 2015, 11, 4806–4822. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.; Bhardwaj, N.; Bhardwaj, S.K.; Kim, K.-H.; Deep, A. Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coord. Chem. Rev. 2016, 322, 30–40. [Google Scholar] [CrossRef]
- Lu, W.; Wei, Z.; Gu, Z.Y.; Liu, T.F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.; et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.-J.; Lü, J.; Hong, M.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): Structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, C.; Tăbăcaru, A.; Galli, S. Coordination Polymers and Metal-Organic Frameworks Based on Poly(pyrazole)-containing Ligands. Coord. Chem. Rev. 2016, 307, 1–31. [Google Scholar] [CrossRef]
- Pettinari, C.; Pettinari, R. Metal derivatives of poly(pyrazolyl)alkanes: II. Bis(pyrazolyl)alkanes and related systems. Coord. Chem. Rev. 2005, 249, 663–691. [Google Scholar] [CrossRef]
- Tahli, A.; Köc, Ü.; Elshaarawy, R.; Kautz, A.; Janiak, C. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O)6][Cd2(atr)2(μ2-btc)2(H2O)4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network. Crystals 2016, 6, 23. [Google Scholar] [CrossRef]
- Zhang, L.-P.; Wen, S.-T.; Fu, X.-N. catena-Poly[[[diaqua-copper(II)]-bis-[μ-1,5-bis-(1H-imidazol-1-yl)pentane-κ(2) N (3):N (3’)]] naphthalene-1,5-disulfonate]. Acta Crystallogr. Sect. E. Struct. Rep. Online 2012, 68, m1505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-L.; Liu, Y.-Y.; Ma, J.-F.; Jiang, H.; Yang, J. Syntheses and characterizations of nine coordination polymers of transition metals with carboxylate anions and bis(imidazole) ligands. Polyhedron 2008, 27, 3351–3358. [Google Scholar] [CrossRef]
- Li, X.-Y.; Liu, M.; Yue, K.-F.; Wu, Y.-P.; He, T.; Yan, N.; Wang, Y.-Y. A series of reaction-controlled coordination polymers constructed from bis(imidazole) and tetrafluoroterephthalic acid ligands: Syntheses, structural diversities, properties. CrystEngComm 2015, 17, 8273–8281. [Google Scholar] [CrossRef]
- Zheng, L.-Y.; Zhao, S.; Liu, L.; Li, K.; Li, B.-L.; Wu, B. Syntheses, structures and luminescence of two cadmium entangled coordination polymers based on bis(imidazole) and biscarboxylate ligands. Inorg. Chem. Commun. 2015, 57, 84–88. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Wang, X.; Zhang, H.; Chi, X.; Yang, Q.; Chen, Y.; Xiao, D. A series of polythreaded architectures based on a long flexible tetracarboxylate ligand and different N-donor ligands. Inorg. Chim. Acta 2016, 447, 66–76. [Google Scholar] [CrossRef]
- Zhang, F.-L.; Tian, L.; Qin, L.-F.; Chen, J.-Q.; Li, Z.; Ren, X.; Gu, Z.-G. Chiral double helical silver complexes: Subcomponent self-assembly and self-sorting. Polyhedron 2016, 104, 9–16. [Google Scholar] [CrossRef]
- Wu, W.P.; Wang, J.; Lu, L.; Wu, Y. Syntheses and luminescence of four supramolecular coordination complexes with flexible ligand. Russ. J. Coord. Chem. 2016, 42, 217–224. [Google Scholar] [CrossRef]
- Cheng, H.-J.; Tang, X.-Y.; Yuan, R.-X.; Lang, J.-P. Structural diversity of Zn(II) coordination polymers based on bis-imidazolyl ligands and 5-R-1,3-benzenedicarboxylate and their photocatalytic properties. CrystEngComm 2016, 18, 4851–4862. [Google Scholar] [CrossRef]
- Lu, J.-F.; Liu, Z.-H. Three metal induced 3D coordination polymers based on H3BTC and 1,3-BIP as co-ligands: Synthesis, structures and fluorescent properties. Polyhedron 2016, 107, 19–26. [Google Scholar] [CrossRef]
- Zheng, L.-Y.; Li, K.; Zhao, S.; Liu, L.; Li, B.-L.; Wu, B. Syntheses, structures and properties of eight coordination polymers based on bis(imidazole) and biscarboxylate ligands. Polyhedron 2016, 104, 1–8. [Google Scholar] [CrossRef]
- Yang, Z.; Han, S.-S.; Zheng, L.-Y.; Peng, Y.-F.; Li, B.-L.; Li, H.-Y. Syntheses, structures, and properties of two- and three-dimensional coordination polymers based on bis(imidazole) and glutarate ligands. J. Coord. Chem. 2015, 68, 1213–1223. [Google Scholar] [CrossRef]
- Chen, S.-S. The roles of imidazole ligands in coordination supramolecular systems. CrystEngComm 2016, 18, 6543–6565. [Google Scholar] [CrossRef]
- Sharma, S.K.; Tandon, M.; Lown, J.W. Design and Synthesis of Novel Thiazole-Containing Cross-Linked Polyamides Related to the Antiviral Antibiotic Distamycin. J. Org. Chem. 2000, 65, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Shoji, O.; Okada, S.; Satake, A.; Kobuke, Y. Coordination assembled rings of ferrocene-bridged trisporphyrin with flexible hinge-like motion: Selective dimer ring formation, its transformation to larger rings, and vice versa. J. Am. Chem. Soc. 2005, 127, 2201–2210. [Google Scholar] [CrossRef] [PubMed]
- Pandey, J.; Tiwari, V.K.; Verma, S.S.; Chaturvedi, V.; Bhatnagar, S.; Sinha, S.; Gaikwad, A.N.; Tripathi, R.P. Synthesis and antitubercular screening of imidazole derivatives. Eur. J. Med. Chem. 2009, 44, 3350–3355. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Gupta, S.K. The first examples of discotic liquid crystalline gemini surfactants. Tetrahedron Lett. 2010, 51, 5459–5462. [Google Scholar] [CrossRef]
- Yang, M.; Stappert, K.; Mudring, A.-V. Bis-cationic ionic liquid crystals. J. Mater. Chem. C 2014, 2, 458–473. [Google Scholar] [CrossRef]
- Gao, Y.; Slattery, J.M.; Bruce, D.W. Columnar thermotropic mesophases formed by dimeric liquid-crystalline ionic liquids exhibiting large mesophase ranges. New J. Chem. 2011, 35, 2910–2918. [Google Scholar] [CrossRef]
- Potapov, A.S.; Nudnova, E.A.; Khlebnikov, A.I.; Ogorodnikov, V.D.; Petrenko, T.V. Synthesis of new polydentate pyrazolyl-ethene ligands by interaction of 1H-pyrazole and 1,1,2,2-tetrabromoethane in a superbasic medium. J. Heterocycl. Chem. 2011, 48, 645–651. [Google Scholar] [CrossRef]
- Domina, G.A.; Potapov, A.S.; Khlebnikov, A.I.; Ogorodnikov, V.D. Synthesis of 1,8-di(pyrazol-1-yl)-3,6-dioxaoctane and its derivatives. Russ. J. Org. Chem. 2009, 45, 1224–1228. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-L.; Qin, C.; Wang, E.-B.; Su, Z.-M.; Xu, L.; Batten, S.R. An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks. Chem. Commun. 2005, 38, 4789–4791. [Google Scholar] [CrossRef] [PubMed]
- Qiblawi, S.H.; Sposato, L.K.; LaDuca, R.L. Chain, layer, and self-penetrated copper dipyridylamine coordination polymers with conformationally flexible ring-based dicarboxylate ligands. Inorg. Chim. Acta 2013, 407, 297–305. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Li, G.; Huo, Q.; Liu, Y. Luminescent MOF material based on cadmium(II) and mixed ligands: Application for sensing volatile organic solvent molecules. RSC Adv. 2015, 5, 18087–18091. [Google Scholar] [CrossRef]
- Farnum, G.A.; Lucas, J.S.; Wang, C.Y.; LaDuca, R.L. Luminescent cadmium and zinc diphenate coordination polymers containing pyridyl-piperazine type ligands: Grids, diamondoid lattices, and a rare 4-connected net. Inorg. Chim. Acta 2011, 368, 84–95. [Google Scholar] [CrossRef]
- Yang, P.-P.; Li, B.; Wang, Y.-H.; Gu, W.; Liu, X. Synthesis, Structure, and Luminescence Properties of Zinc(II) and Cadmium(II) Complexes containing the Flexible Ligand of 3,3′-Thiodipropionic Acid. Z. Anorg. Allg. Chem. 2008, 634, 1221–1224. [Google Scholar] [CrossRef]
- Bushuev, M.B.; Selivanov, B.A.; Pervukhina, N.V.; Naumov, D.Y.; Rakhmanova, M.I.; Sheludyakova, L.A.; Tikhonov, A.Y.; Larionov, S.V. Luminescent zinc(II) and cadmium(II) complexes based on 2-(4,5-dimethyl-1H-imidazol-2-yl)pyridine and 2-(1-hydroxy-4,5-dimethyl-1H-imidazol-2-yl)pyridine. Russ. J. Gen. Chem. 2012, 82, 1859–1868. [Google Scholar] [CrossRef]
- Heine, J.; Müller-Buschbaum, K. Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242. [Google Scholar] [CrossRef] [PubMed]
- Sapchenko, S.A.; Dybtsev, D.N.; Samsonenko, D.G.; Fedin, V.P. Synthesis, crystal structures, luminescent and thermal properties of two new metal–organic coordination polymers based on zinc(II) carboxylates. New J. Chem. 2010, 34, 2445–2450. [Google Scholar] [CrossRef]
- Wei, G.-H.; Yang, J.; Ma, J.-F.; Liu, Y.-Y.; Li, S.-L.; Zhang, L.-P. Syntheses, structures and luminescent properties of zinc(II) and cadmium(II) coordination complexes based on new bis(imidazolyl)ether and different carboxylate ligands. Dalt. Trans. 2008, 127, 3080–3092. [Google Scholar] [CrossRef] [PubMed]
- CrysAlisPro, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET). Agilent Technologies: Santa Clara, CA, USA.
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Empirical formula | C22H27N5O5Zn | C22H27CdN5O5 | C20H22N4O4Zn | C21H26CdN4O5 |
M, g/mol | 506.85 | 553.88 | 447.78 | 526.86 |
T, K | 130(2) | 130(2) | 120(2) | 120(2) |
λ, Å | 0.71073 (MoKα) | 0.71073 (MoKα) | 1.54184 (CuKα) | 1.54184 (CuKα) |
Crystal system | Monoclinic | Monoclinic | Orthorhombic | Triclinic |
Space group | P21/c | P21/c | P212121 | P−1 |
a, Å | 10.73257(16) | 10.8546(3) | 15.123(5) | 9.2444(10) |
b, Å | 23.2562(3) | 23.6261(7) | 18.806(5) | 10.0116(8) |
c, Å | 9.76351(17) | 9.6799(3) | 20.722(4) | 14.4659(13) |
α, deg. | 90 | 90 | 90 | 107.371(8) |
β, deg. | 105.3925(17) | 104.140(3) | 90 | 91.269(8) |
γ, deg. | 90 | 90 | 90 | 116.622(10) |
V, Å3 | 2349.55(6) | 2407.21(13) | 5893(3) | 1123.1(2) |
Z | 4 | 4 | 12 | 2 |
D(calcd.), g/cm3 | 1.433 | 1.528 | 1.514 | 1.558 |
μ, mm−1 | 1.088 | 0.949 | 2.038 | 8.124 |
F(000) | 1056 | 1128 | 2784 | 536 |
Crystal size, mm | 0.34 × 0.31 × 0.21 | 0.88 × 0.15 × 0.13 | 0.10 × 0.04 × 0.04 | 0.42 × 0.23 × 0.06 |
θ range for data collection, deg. | 3.40–30.99 | 3.36–31.14 | 3.62–70.07 | 5.15–74.36 |
Index ranges | −15 ≤ h ≤ 14, −32 ≤ k ≤ 32, −14 ≤ l ≤ 9 | −15 ≤ h ≤ 15, −32 ≤ k ≤ 31, −13 ≤ l ≤ 11 | −17 ≤ h ≤ 18, −22 ≤ k ≤ 22, −25 ≤ l ≤ 15 | −11 ≤ h ≤ 11, −10 ≤ k ≤ 12, −17 ≤ l ≤ 15 |
Reflections collected/independent | 24131/6791 | 24703/6948 | 15255/9867 | 8600/4465 |
Rint | 0.0160 | 0.0184 | 0.1258 | 0.0568 |
Reflections with I > 2σ(I) | 6249 | 6270 | 5058 | 4272 |
Goodness-of-fit on F2 | 1.075 | 1.090 | 1.760 | 1.055 |
Final R indices [I > 2σ(I)] | R1 = 0.0374, wR2 = 0.1059 | R1 = 0.0268, wR2 = 0.0607 | R1 = 0.1719, wR2 = 0.4597 | R1 = 0.0487, wR2 = 0.1236 |
R indices (all data) | R1 = 0.0409, wR2 = 0.1082 | R1 = 0.0317, wR2 = 0.0628 | R1 = 0.2661, wR2 = 0.5394 | R1 = 0.0503, wR2 = 0.1292 |
Largest diff. peak/hole, e/Å3 | 1.227/−0.532 | 1.584/−0.379 | 3.392/−3.531 | 1.790/−1.490 |
Compound 1 | |||
Bond | d, Å | Bond | d, Å |
Zn(1)–O(11) | 1.9581(14) | Zn(1)–N(11) | 2.0273(16) |
Zn(1)–O(21) | 1.9714(12) | Zn(1)–N(14) i | 1.9987(15) |
Angle | ω, deg. | Angle | ω, deg. |
O(11)–Zn(1)–O(21) | 102.79(7) | O(21)–Zn(1)–N(11) | 117.80(6) |
O(11)–Zn(1)–N(11) | 93.57(7) | O(21)–Zn(1)–N(14) i | 112.02(6) |
O(11)–Zn(1)–N(14) i | 125.78(6) | N(14) i–Zn(1)–N(11) | 104.57(6) |
Symmetry transformations used to generate equivalent atoms: (i) x − 1, −y + ½, z − ½. | |||
Compound 2 | |||
Bond | d, Å | Bond | d, Å |
Cd(1)–O(11) | 2.2782(12) | Cd(1)–O(22) | 2.4000(13) |
Cd(1)–O(12) | 2.4848(13) | Cd(1)–N(11) | 2.2561(15) |
Cd(1)–O(21) | 2.3262(12) | Cd(1)–N(14) i | 2.2355(14) |
Angle | ω, deg. | Angle | ω, deg. |
O(11)–Cd(1)–O(12) | 55.05(4) | N(11)–Cd(1)–O(21) | 84.42(5) |
O(11)–Cd(1)–O(21) | 91.19(5) | N(11)–Cd(1)–O(22) | 111.99(5) |
O(11)–Cd(1)–O(22) | 106.26(5) | N(14) i–Cd(1)–O(11) | 112.06(5) |
O(21)–Cd(1)–O(12) | 126.27(4) | N(14) i–Cd(1)–O(12) | 89.67(5) |
O(21)–Cd(1)–O(22) | 55.49(4) | N(14) i–Cd(1)–O(21) | 144.03(5) |
O(22)–Cd(1)–O(12) | 159.54(5) | N(14) i–Cd(1)–O(22) | 90.73(5) |
N(11)–Cd(1)–O(11) | 129.33(5) | N(14) i–Cd(1)–N(11) | 99.61(5) |
N(11)–Cd(1)–O(12) | 88.08(5) | ||
Symmetry transformations used to generate equivalent atoms: (i) x − 1, −y + ½, z − ½. | |||
Compound 3 | |||
Bond | d, Å | Bond | d, Å |
Zn(1)–O(11) | 2.03(3) | Zn(2)–O(23) ii | 1.95(2) |
Zn(1)–N(11) | 2.05(2) | Zn(2)–N(24) iii | 1.99(3) |
Zn(1)–O(22) | 2.12(3) | Zn(3)–N(14) | 2.05(3) |
Zn(1)–N(34) i | 1.98(2) | Zn(3)–O(31) | 1.98(2) |
Zn(2)–O(13) | 1.94(3) | Zn(3)–N(31) | 1.99(2) |
Zn(2)–N(21) | 2.01(3) | Zn(3)–O(34) iv | 1.99(3) |
Angle | ω, deg. | Angle | ω, deg. |
O(11)–Zn(1)–N(11) | 105.1(14) | O(23) ii–Zn(2)–N(21) | 108.3(14) |
O(11)–Zn(1)–O(22) | 120.9(11) | O(23) ii–Zn(2)–N(24) iii | 109.7(14) |
N(11)–Zn(1)–O(22) | 97.4(14) | N(24) iii–Zn(2)–N(21) | 112.5(10) |
N(34) i–Zn(1)–O(11) | 111.6(15) | O(31)–Zn(3)–N(14) | 110.4(11) |
N(34) i–Zn(1)–N(11) | 112.1(9) | O(31)–Zn(3)–N(31) | 114.5(11) |
N(34) i–Zn(1)–O(22) | 108.8(15) | O(31)–Zn(3)–O(34) iv | 115.6(9) |
O(13)–Zn(2)–N(21) | 114.4(13) | N(31)–Zn(3)–N(14) | 111.8(9) |
O(13)–Zn(2)–N(24) iii | 98.5(14) | N(31)–Zn(3)–O(34) iv | 109.7(11) |
O(13)–Zn(2)–O(23) ii | 113.3(10) | O(34) iv–Zn(3)–N(14) | 92.8(12) |
Symmetry transformations used to generate equivalent atoms: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) x + 1/2, −y + 3/2, −z; (iv) −x + 1, y + ½, −z + 5/2. | |||
Compound 4 | |||
Bond | d, Å | Bond | d, Å |
Cd(1)–O(11) | 2.399(3) | Cd(1)–O(22) i | 2.216(3) |
Cd(1)–O(12) | 2.446(3) | Cd(1)–N(11) | 2.324(4) |
Cd(1)–O(21) | 2.287(3) | Cd(1)–N(21) | 2.259(3) |
Angle | ω, deg. | Angle | ω, deg. |
O(11)–Cd(1)–O(12) | 54.22(9) | O(22) i–Cd(1)–N(21) | 108.86(11) |
O(21)–Cd(1)–O(11) | 90.18(10) | N(11)–Cd(1)–O(11) | 83.89(11) |
O(21)–Cd(1)–O(12) | 86.53(10) | N(11)–Cd(1)–O(12) | 91.99(12) |
O(21)–Cd(1)–N(11) | 173.57(11) | N(21)–Cd(1)–O(11) | 110.33(11) |
O(22) i–Cd(1)–O(11) | 139.13(10) | N(21)–Cd(1)–O(12) | 164.17(12) |
O(22) i–Cd(1)–O(12) | 86.97(10) | N(21)–Cd(1)–O(21) | 90.41(11) |
O(22) i–Cd(1)–O(21) | 100.73(10) | N(21)–Cd(1)–N(11) | 89.32(13) |
O(22) i–Cd(1)–N(11) | 85.42(12) | ||
Symmetry transformations used to generate equivalent atoms: (i) −x + 2, −y + 1, −z. |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barsukova, M.; Goncharova, T.; Samsonenko, D.; Dybtsev, D.; Potapov, A. Synthesis, Crystal Structure, and Luminescent Properties of New Zinc(II) and Cadmium(II) Metal-Organic Frameworks Based on Flexible Bis(imidazol-1-yl)alkane Ligands. Crystals 2016, 6, 132. https://doi.org/10.3390/cryst6100132
Barsukova M, Goncharova T, Samsonenko D, Dybtsev D, Potapov A. Synthesis, Crystal Structure, and Luminescent Properties of New Zinc(II) and Cadmium(II) Metal-Organic Frameworks Based on Flexible Bis(imidazol-1-yl)alkane Ligands. Crystals. 2016; 6(10):132. https://doi.org/10.3390/cryst6100132
Chicago/Turabian StyleBarsukova, Marina, Tatiana Goncharova, Denis Samsonenko, Danil Dybtsev, and Andrei Potapov. 2016. "Synthesis, Crystal Structure, and Luminescent Properties of New Zinc(II) and Cadmium(II) Metal-Organic Frameworks Based on Flexible Bis(imidazol-1-yl)alkane Ligands" Crystals 6, no. 10: 132. https://doi.org/10.3390/cryst6100132
APA StyleBarsukova, M., Goncharova, T., Samsonenko, D., Dybtsev, D., & Potapov, A. (2016). Synthesis, Crystal Structure, and Luminescent Properties of New Zinc(II) and Cadmium(II) Metal-Organic Frameworks Based on Flexible Bis(imidazol-1-yl)alkane Ligands. Crystals, 6(10), 132. https://doi.org/10.3390/cryst6100132