Growth and Characterization on PMN-PT-Based Single Crystals
Abstract
:1. Introduction
can increase by over 50% and 80%, respectively, as the PT content increases from 27% to 32%. In contrast, the electromechanical coupling factor k33 showed a much smaller increase from 0.87 to 0.92 for the same PT range. Property improvements of the ternary PIN-PMN-PT crystals over the binary PMN-PT are also presented and discussed.2. Results and Discussion
2.1. Crystal Growth
2.2. Property Variation of PMN-PT


values obtained for crystal bars by the resonance method increased significantly from 32.6 × 10−12 m2/N to 62.6 × 10−12 m2/N, as Tc increased from 121 °C to 142 °C (i.e., 26.5% PT to 32% PT). There is a strong linear dependence on Tc (and, thus, PT content) within the MPB region (Figure 3).

2.3. Property of PIN-PMN-PT


3. Experimental Section
3.1. Crystal Growth
3.2. Sample Preparation
3.3. Property Characterization
3.3.1. Dielectric Properties
3.3.2. Electromechanical Coupling
3.3.3. Elastic Property
, were calculated, according to [26,27]:
3.3.4. Piezoelectric Properties
3.3.5. Depoling Temperature
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Park, S.E.; Shrout, T.R. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. 1997, 44, 1140–1147. [Google Scholar] [CrossRef]
- Luo, H.S.; Xu, G.S.; Wang, P.C.; Yin, Z.W. Growth and characterization of relaxor ferroelectric PMNT single crystals. Ferroelectrics 1999, 231, 685–690. [Google Scholar]
- Fu, H.X.; Cohen, R.E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 2000, 403, 281–283. [Google Scholar] [CrossRef]
- Bokov, A.A.; Ye, Z.G. Ferroelectric properties of monoclinic Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Phys. Rev. B 2002, 66, 1–5. [Google Scholar]
- Luo, H.S.; Xu, G.S.; Xu, H.Q.; Wang, P.C.; Yin, Z.W. Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified Bridgman technique. Jpn. J. Appl. Phys. 2000, 39, 5581–5585. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Fang, B.J.; Cao, H.; Guo, Y.P.; Luo, H.S. Dielectric and piezoelectric performance of PMN-PT single crystals with compositions around the MPB: Influence of composition, poling field and crystal orientation. Mater. Sci. Eng. B Solid 2002, 96, 254–262. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.S.; Roh, Y.; Lee, H.Y.; Han, J.H. Measurement of all the elastic, piezoelectric, and dielectric properties of PMN-PT single crystals. Proc. SPIE 2003, 5053, 505–512. [Google Scholar]
- Tian, J.; Han, P.; Payne, D.A. Measurements along the growth direction of PMN-PT crystals: Dielectric, piezoelectric, and elastic properties. IEEE Trans. Ultrason. Ferroelectr. 2007, 54, 1895–1902. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 2012, 111. [Google Scholar] [CrossRef]
- Han, P.; Tian, J.; Yan, W. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications; Woodhead Publishing Ltd.: Cambridge, England, 2008. [Google Scholar]
- Xu, S.; Poirier, G.; Yao, N. PMN-PT nanowires with a very high piezoelectric constant. Nano Lett. 2012, 12, 2238–2242. [Google Scholar]
- Xu, S.; Yeh, Y.-W.; Poirier, G.; McAlpine, M.C.; Register, R.A.; Yao, N. Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. Nano Lett. 2013, 13, 2393–2398. [Google Scholar]
- Xu, G.; Chen, K.; Yang, D.F. Growth and electrical properties of large size Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3 crystals prepared by the vertical Bridgman technique. Appl. Phys. Lett. 2007, 90. [Google Scholar] [CrossRef]
- Tian, J.; Han, P.; Huang, X.; Pan, H.; Carroll, J.F.; Payne, D.A. Improved stability for piezoelectric crystals grown in the lead indium niobate-lead magnesium niobate-lead titanate system. Appl. Phys. Lett. 2007, 91. [Google Scholar] [CrossRef]
- Luo, J.; Hackenberger, W.; Zhang, S.J.; Shrout, T.R. Elastic, piezoelectric and dielectric properties of PIN-PMN-PT crystals grown by Bridgman method. Proc. IEEE Ultrason. Symp. 2008, 1–4, 261–264. [Google Scholar]
- Zhang, S.J.; Luo, J.; Hackenberger, W.; Sherlock, N.P.; Meyer, R.J.; Shrout, T.R. Electromechanical characterization of Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals as a function of crystallographic orientation and temperature. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef]
- Wang, P.-C.; Luo, H.-S.; Pan, X.-M.; Li, D.-L.; Yin, Z.-W. Dielectric and piezoelectric properties of PMN-PT single crystals grown by Bridgman method. Proc. IEEE Ultrason. Symp. 2000, 2, 537–540. [Google Scholar]
- Tian, J.; Han, P.; Carroll, J.F.; Payne, D.A. Growth and improved properties of ternary piezoelectric single crystals in lead indium niobate-lead magnesium niobate-lead titanate system. Proc. IEEE Ultrason. Symp. 2009, 972–975. [Google Scholar]
- Zawilski, K.T.; Custodio, M.C.C.; DeMattei, R.C.; Lee, S.G.; Monteiro, R.G.; Odagawa, H.; Feigelson, R.S. Segregation during the vertical Bridgman growth of lead magnesium niobate-lead titanate single crystals. J. Cryst. Growth 2003, 258, 353–367. [Google Scholar] [CrossRef]
- Cao, H.; Fang, B.J.; Xu, H.Q.; Luo, H.S. Effects of segregation on composition and dielectric and piezoelectric properties of Pb(Mg1/3Nb2/3)O3–38%PbTiO3 single crystal. J. Inorg. Mater. 2003, 18, 50–56. [Google Scholar]
- Shrout, T.R.; Chang, Z.P.; Kim, N.C.; Markgraf, S. Dielectric behavior of single-crystals near the (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 morphotropic phase-boundary. Ferroelectr. Lett. 1990, 12, 63–69. [Google Scholar] [CrossRef]
- Zekria, D.; Shuvaeva, V.A.; Glazer, A.M. Birefringence imaging measurements on the phase diagram of Pb(Mg1/3Nb2/3)O3-PbTiO3. J. Phys. Condens. Matter 2005, 17, 1593–1600. [Google Scholar] [CrossRef]
- Tian, J.; Han, P.; Carroll, J.F.; Payne, D.A. Improved Properties of Piezoelectric Crystal Lead Indium Niobate-Lead Magnesium Niobate-Lead Titanate. Proc. IEEE Ultrason. Symp. 2008, 1–4, 269–271. [Google Scholar]
- Tian, J.; Han, P. Crystal growth and property characterization for PIN-PMN-PT ternary piezoelectric crystals. J. Adv. Dielectr. 2014, 4. [Google Scholar] [CrossRef]
- Moulson, A.J.; Herbert, J.M. Electroceramics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- IEEE Standard on Piezoelectricity; The Institute of Electrical and Electronics Engineerings, Inc: New York, NY, USA, 1987.
- Li, Y.; Qin, Z.; Zhou, Z. Measurement of Piezoelectric and Ferroelectric Materials; Science Press: Beijing, China, 1984. (In Chinese) [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tian, J.; Han, P. Growth and Characterization on PMN-PT-Based Single Crystals. Crystals 2014, 4, 331-341. https://doi.org/10.3390/cryst4030331
Tian J, Han P. Growth and Characterization on PMN-PT-Based Single Crystals. Crystals. 2014; 4(3):331-341. https://doi.org/10.3390/cryst4030331
Chicago/Turabian StyleTian, Jian, and Pengdi Han. 2014. "Growth and Characterization on PMN-PT-Based Single Crystals" Crystals 4, no. 3: 331-341. https://doi.org/10.3390/cryst4030331
APA StyleTian, J., & Han, P. (2014). Growth and Characterization on PMN-PT-Based Single Crystals. Crystals, 4(3), 331-341. https://doi.org/10.3390/cryst4030331

