Selective Crystallization of Trans-Nerolidol in β-Cyclodextrin: Crystal Structure and Molecular Dynamics Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. X-Ray Crystallography
2.1.1. Materials
2.1.2. Crystallization
2.1.3. Data Collection and Processing
2.1.4. Structure Determination and Refinement
2.2. Computational Methods
2.2.1. Molecular Docking
2.2.2. Molecular Dynamics Simulations
- (a)
- Selective energy minimization of hydrogen atoms;
- (b)
- A 50 ps relaxation of the solvent molecules in the NVT ensemble, applying 50 kcal·mol−1·Å−2 restraints on the host–guest atoms;
- (c)
- Full minimization without restraints;
- (d)
- Gradual heating of the restrained system from 5 K to 300 K with positional restraints of 10 kcal·mol−1·Å−2;
- (e)
- Gradual release of restraints at 300 K;
- (f)
- A 250 ps density equilibration in the NPT ensemble;
- (g)
- A 400 ps unrestrained equilibration at 300 K and 1 atm.
2.2.3. MMGB/SA Analysis
3. Results
3.1. Crystal Structure
3.1.1. Description of the Structure
3.1.2. Molecular Packing
3.2. Computational Results
3.2.1. Docking Results
3.2.2. Trajectory Analysis
3.2.3. MM/GBSA Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
t-REL | trans-nerolidol |
c1-REL | cis-nerolidol (Pose 1) |
c8-REL | cis-nerolidol (Pose 8) |
β-CD | beta-cyclodextrin |
MD | molecular dynamics simulation |
SC-XRD | single-crystal X-ray diffraction |
IC | inclusion complex |
References
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Chanotiya, C.S. The Essential Oil Composition of Melaleuca leucadendra L. Grown in India: A Novel Source of (E)-Nerolidol. Ind. Crops Prod. 2015, 69, 224–227. [Google Scholar] [CrossRef]
- Ceole, L.F.; Cardoso, M.D.G.; Soares, M.J. Nerolidol, the Main Constituent of Piper Aduncum Essential Oil, Has Anti-Leishmania Braziliensis Activity. Parasitology 2017, 144, 1179–1190. [Google Scholar] [CrossRef]
- Curvelo, J.A.R.; Marques, A.M.; Barreto, A.L.S.; Romanos, M.T.V.; Portela, M.B.; Kaplan, M.A.C.; Soares, R.M.A. A Novel Nerolidol-Rich Essential Oil from Piper Claussenianum Modulates Candida Albicans Biofilm. J. Med. Microbiol. 2014, 63, 697–702. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Özek, G.; Özek, T.; Kirpotina, L.N.; Kokorina, P.I.; Khlebnikov, A.I.; Quinn, M.T. Neutrophil Immunomodulatory Activity of Nerolidol, a Major Component of Essential Oils from Populus Balsamifera Buds and Propolis. Plants 2022, 11, 3399. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Liu, Z.; Song, H.; Wang, S.; Zhang, Y.; Zhan, C.; Liu, D.; Tian, Y.; Tang, M.; et al. Review of Recent Advances in Microbial Production and Applications of Nerolidol. J. Agric. Food Chem. 2025, 73, 5724–5747. [Google Scholar] [CrossRef]
- Ephrem, E.; Najjar, A.; Charcosset, C.; Greige-Gerges, H. Use of Free and Encapsulated Nerolidol to Inhibit the Survival of Lactobacillus fermentum in Fresh Orange Juice. Food Chem. Toxicol. 2019, 133, 110795. [Google Scholar] [CrossRef]
- Chan, W.-K.; Tan, L.T.; Chan, K.-G.; Lee, L.-H.; Goh, B.-H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef]
- Schubert, V.; Dietrich, A.; Ulrich, T.; Mosandl, A. The Stereoisomers of Nerolidol: Separation, Analysis and Olfactoric Properties. Z. Naturforschung C 1992, 47, 304–307. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Luo, Q.; You, T. A Comprehensive Study of the Enantioseparation of Chiral Drugs by Cyclodextrin Using Capillary Electrophoresis Combined with Theoretical Approaches. Talanta 2015, 142, 28–34. [Google Scholar] [CrossRef]
- Yu, R.B.; Quirino, J.P. Chiral Separation Using Cyclodextrins as Mobile Phase Additives in Open-Tubular Liquid Chromatography with a Pseudophase Coating. J. Sep. Sci. 2022, 45, 1195–1201. [Google Scholar] [CrossRef]
- de Souza, E.P.B.S.S.; Gomes, M.V.L.D.; dos Santos Lima, B.; Silva, L.A.S.; Shanmugan, S.; Cavalcanti, M.D.; de Albuquerque Júnior, R.L.C.; de Souza Carvalho, F.M.; Marreto, R.N.; de Lima, C.M.; et al. Nerolidol-Beta-Cyclodextrin Inclusion Complex Enhances Anti-Inflammatory Activity in Arthritis Model and Improves Gastric Protection. Life Sci. 2021, 265, 118742. [Google Scholar] [CrossRef]
- Azzi, J.; Danjou, P.-E.; Landy, D.; Ruellan, S.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. The Effect of Cyclodextrin Complexation on the Solubility and Photostability of Nerolidol as Pure Compound and as Main Constituent of Cabreuva Essential Oil. Beilstein J. Org. Chem. 2017, 13, 835–844. [Google Scholar] [CrossRef]
- Venkatesan, K.B.; Alamelu, S.; Srinivasan, M.K.; Pachaiappan, P. Nerolidol Loaded Beta Cyclodextrin Nanoparticles: A Promising Strategy for Inducing Apoptosis in Breast Cancer Cells (MCF-7). J. Biomater. Sci. Polym. Ed. 2025, 1–31. [Google Scholar] [CrossRef]
- Fourtaka, K.; Christoforides, E.; Tzamalis, P.; Bethanis, K. Inclusion of Citral Isomers in Native and Methylated Cyclodextrins: Structural Insights by X-Ray Crystallography and Molecular Dynamics Simulation Analysis. J. Mol. Struct. 2021, 1234, 130169. [Google Scholar] [CrossRef]
- Maheshwari, A.; Saraswat, H.; Upadhyay, S.K. Structural Insights into the Inclusion Complexes between Clomiphene Citrate and β-Cyclodextrin: The Mechanism of Preferential Isomeric Selection. Chirality 2017, 29, 451–457. [Google Scholar] [CrossRef]
- Peluso, P.; Dallocchio, R.; Dessì, A.; Salgado, A.; Chankvetadze, B.; Scriba, G.K.E. Molecular Modeling Study to Unravel Complexation of Daclatasvir and Its Enantiomer by β-Cyclodextrins. Computational Analysis Using Quantum Mechanics and Molecular Dynamics. Carbohydr. Polym. 2024, 346, 122483. [Google Scholar] [CrossRef]
- Napiórkowska, E.; Szeleszczuk, Ł. Review of Applications of β-Cyclodextrin as a Chiral Selector for Effective Enantioseparation. Int. J. Mol. Sci. 2024, 25, 10126. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SAINT 2013, Version 8.34A; Bruker-AXS: Madison, WI, USA, 2013.
- Sheldrick, G.M. SADABS 2012, Version 2008/1; Bruker-AXS: Madison, WI, USA, 2012.
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef]
- Thorn, A.; Dittrich, B.; Sheldrick, G.M. Enhanced Rigid-Bond Restraints. Acta Crystallogr. Sect. A Found. Crystallogr. 2012, 68, 448–451. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.8; Schrödinger, LLC.: New York, NY, USA, 2015.
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An Overview of the Amber Biomolecular Simulation Package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 3, 198–210. [Google Scholar] [CrossRef]
- Kirschner, K.N.; Yongye, A.B.; Tschampel, S.M.; Gonzalez-Outeirino, J.; Daniels, C.R.; Foley, B.L.; Woods, R.J. GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.; Case, D. ANTECHAMBER: An Accessory Software Package for Molecular Mechanical Calculations. J. Chem. Inf. Comput. Sci.—JCISD 2000, 222, 2001. [Google Scholar]
- Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Miller, B.R., 3rd; McGee, T.D.J.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
- Fourtaka, K.; Christoforides, E.; Mentzafos, D.; Bethanis, K. Crystal Structures and Molecular Dynamics Studies of the Inclusion Compounds of β-Citronellol in β-Cyclodextrin, Heptakis(2,6-Di-O-Methyl)-β-Cyclodextrin and Heptakis(2,3,6-Tri-O-Methyl)-β-Cyclodextrin. J. Mol. Struct. 2018, 1161, 1–8. [Google Scholar] [CrossRef]
- Christoforides, E.; Fourtaka, K.; Andreou, A.; Bethanis, K. X-Ray Crystallography and Molecular Dynamics Studies of the Inclusion Complexes of Geraniol in β-Cyclodextrin, Heptakis (2,6-Di-O-Methyl)-β-Cyclodextrin and Heptakis (2,3,6-Tri-O-Methyl)-β-Cyclodextrin. J. Mol. Struct. 2020, 1202, 127350. [Google Scholar] [CrossRef]
- Ceborska, M. Structural Investigation of the β-Cyclodextrin Complexes with Linalool and Isopinocampheol—Influence of Monoterpenes Cyclicity on the Host–Guest Stoichiometry. Chem. Phys. Lett. 2016, 651, 192–197. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Rácz, C.-P.; Borodi, G.; Pop, M.M.; Kacso, I.; Sánta, S.; Tomoaia-Cotisel, M. Structure of the Inclusion Complex of β-Cyclodextrin with Lipoic Acid from Laboratory Powder Diffraction Data. Acta Crystallogr. Sect. B 2012, 68, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Caira, M.R.; de Vries, E.J.C.; Nassimbeni, L.R. Crystallization of Two Forms of a Cyclodextrin Inclusion Complex Containing a Common Organic Guest. Chem. Commun. 2003, 16, 2058–2059. [Google Scholar] [CrossRef]
- Navaza, A.; Iroulart, M.G.; Navaza, J. A Monomeric Uranyl Hydroxide System Obtained by Inclusion in the β-Cyclodextrin Cavity. J. Coord. Chem. 2000, 51, 153–168. [Google Scholar] [CrossRef]
- Guerrero-Martínez, A.; Ávila, D.; Martínez-Casado, F.J.; Ripmeester, J.A.; Enright, G.D.; Cola, L.D.; Tardajos, G. Solid Crystal Network of Self-Assembled Cyclodextrin and Nonionic Surfactant Pseudorotaxanes. J. Phys. Chem. B 2010, 114, 11489–11495. [Google Scholar] [CrossRef]
- Alexander, J.M.; Clark, J.L.; Brett, T.J.; Stezowski, J.J. Chiral Discrimination in Cyclodextrin Complexes of Amino Acid Derivatives: β-Cyclodextrin/N-Acetyl-l-Phenylalanine and N-Acetyl- d-Phenylalanine Complexes. Proc. Natl. Acad. Sci. USA 2002, 99, 5115–5120. [Google Scholar] [CrossRef]
- Hirata, K.; Mori, Y.; Ishiuchi, S.; Fujii, M.; Zehnacker, A. Chiral Discrimination between Tyrosine and β-Cyclodextrin Revealed by Cryogenic Ion Trap Infrared Spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 24887–24894. [Google Scholar] [CrossRef] [PubMed]
- Rekharsky, M.; Inoue, Y. Chiral Recognition Thermodynamics of β-Cyclodextrin: The Thermodynamic Origin of Enantioselectivity and the Enthalpy−Entropy Compensation Effect. J. Am. Chem. Soc. 2000, 122, 4418–4435. [Google Scholar] [CrossRef]
- Balzano, F.; Uccello-Barretta, G.; Sicoli, G.; Vanni, L.; Recchimurzo, A.; Aiello, F. Chiral Discrimination Mechanisms by Silylated-Acetylated Cyclodextrins: Superficial Interactions vs. Inclusion. Int. J. Mol. Sci. 2022, 23, 13169. [Google Scholar] [CrossRef] [PubMed]
t-REL/β-Cyclodextrin IC | |
---|---|
Crystal data | |
Chemical formula | 2(C42H70O35)·C15H26O·14(O) |
Mr | 2716.31 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 120 |
a, b, c (Å) | 18.917 (11), 24.424 (15), 15.688 (10) |
β (°) | 110.634 (11) |
V (Å3) | 6783 (7) |
Z | 2 |
Radiation type | Cu Kα |
μ (mm−1) | 1.03 |
Crystal size (mm3) | 0.4 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Bruker APEX-II |
Absorption correction | Multi-scan SADABS2016/2—Bruker AXS area detector scaling and absorption correction |
Tmin, Tmax | 0.594, 0.753 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 63,362, 11,247, 10,515 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.587 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.077, 0.222, 1.05 |
No. of reflections | 11,247 |
No. of parameters | 805 |
No. of restraints | 61 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −0.42 |
CCDC number | 2475921 |
Inclusion Mode-Starting Pose | Affinity (Kcal/Mole) | Distance from RMSD l.b. | Distance from RMSD u.b. |
---|---|---|---|
1 | −6.1 | 0.000 | 0.000 |
2 | −5.9 | 2.043 | 3.829 |
3 | −5.8 | 1.722 | 3.524 |
4 | −5.7 | 1.874 | 3.869 |
5 | −5.6 | 1.490 | 3.895 |
6 | −5.6 | 2.071 | 4.071 |
7 | −5.4 | 2.270 | 4.076 |
8 | −5.4 | 2.992 | 5.403 |
9 | −5.3 | 2.850 | 4.849 |
t-REL/β-CD IC (SC-XRD, Extended Conformation) | c1-REL/β-CD IC (1st Docked Pose, Bent Conformation) | c8-REL/β-CD IC (8th Docked Pose, Extended Conformation) | |
---|---|---|---|
ΔEvdW | −41.5 (±3.8) | −42.6 (±2.9) | −42.5 (±2.0) |
ΔEele | −4.2 (±3.5) | −3.2 (±2.4) | −2.6 (±1.6) |
ΔEGB | 21.4 (±3.1) | 22.4 (±2.6) | 18.6 (±2.2) |
ΔEsurf | −5.0 (±0.3) | −5.1 (±0.3) | −4.9 (±0.2) |
ΔGgas a | −45.7 (±4.6) | −45.8 (±3.2) | −45.1 (±2.7) |
ΔGsolv b | 16.4 (±3.2) | 17.3 (±2.6) | 13.7 (±2.1) |
ΔH c | −29.3 (±4.0) | −28.5 (±2.9) | −31.4 (±2.7) |
T·ΔS | −20.1 (±4.1) | −19.9 (±2.6) | −20.3 (±3.4) |
ΔGbind d | −9.2 (±5.7) | −8.6 (±3.9) | −11.1 (±4.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christoforides, E.; Andreou, A.; Koskina, P.; Bethanis, K. Selective Crystallization of Trans-Nerolidol in β-Cyclodextrin: Crystal Structure and Molecular Dynamics Analysis. Crystals 2025, 15, 802. https://doi.org/10.3390/cryst15090802
Christoforides E, Andreou A, Koskina P, Bethanis K. Selective Crystallization of Trans-Nerolidol in β-Cyclodextrin: Crystal Structure and Molecular Dynamics Analysis. Crystals. 2025; 15(9):802. https://doi.org/10.3390/cryst15090802
Chicago/Turabian StyleChristoforides, Elias, Athena Andreou, Polytimi Koskina, and Kostas Bethanis. 2025. "Selective Crystallization of Trans-Nerolidol in β-Cyclodextrin: Crystal Structure and Molecular Dynamics Analysis" Crystals 15, no. 9: 802. https://doi.org/10.3390/cryst15090802
APA StyleChristoforides, E., Andreou, A., Koskina, P., & Bethanis, K. (2025). Selective Crystallization of Trans-Nerolidol in β-Cyclodextrin: Crystal Structure and Molecular Dynamics Analysis. Crystals, 15(9), 802. https://doi.org/10.3390/cryst15090802