Effect of Cr, Mo, and W Contents on the Semiconductive Properties of Passive Film of Ferritic Stainless Steels
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Anodic Polarization Test
2.3. Potentiostatic EIS Test
2.4. XPS Analysis
2.5. Mott–Schottky Analysis
3. Results
3.1. Effect of Cr, Mo, and W Contents on the Electrochemical Properties
3.2. Effect of Cr, Mo, and W Contents on the XPS Analysis
4. Discussion
5. Conclusions
- (1)
- Increasing Cr, Mo, and W content in stainless steel leads to a decrease in the passive current density (ip) and an enhancement in polarization resistance (Rp). In addition, XPS depth profiling identified that the passive film possesses a double-layer structure, comprising an inner layer with p-type semiconductor properties near the metal and an outer layer exhibiting n-type semiconductor characteristics at the film–solution interface.
- (2)
- Using Mott–Schottky analysis, the slopes corresponding to the p-type and n-type semiconductor characteristics of the passive film were determined, leading to the introduction of a new metric termed the “Bipolar Index,” defined as |p-type slope| + |n-type slope|. As the concentrations of Cr, Mo, and W increase, the bipolar index also rises, thereby enhancing the semiconductor characteristics of the passive film. This leads to a decrease in the concentration of point defects within the film, resulting in a reduction in the passive current density (ip) and an increase in the polarization resistance (Rp).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- LaQue, F.L.; Copson, H.R. Corrosion Resistance of Metal and Alloys, 2nd ed.; Reinhold: New York, NY, USA, 1963; p. 375. [Google Scholar]
- Olefjord, I. The passive state of stainless steels. Mater. Sci. Eng. 1980, 42, 161–171. [Google Scholar] [CrossRef]
- Hannani, A.; Kermiche, F.; Pourbaix, A.; Belmokre, K. Characterisation of passive film on AISI304 stainless steel. Trans. IMF 1997, 75, 7–9. [Google Scholar] [CrossRef]
- Haupt, S.; Strehblow, H.H. A combined surface analytical and electrochemical study of the formation of passive layers on alloys in 0.5 M H2SO4. Corros. Sci. 1995, 37, 43–54. [Google Scholar] [CrossRef]
- Ruijing, J.; Wang, Y.; Wen, X.; Chen, C.; Zhao, J. Effect of time on the characteristics of passive film formed on stainless steel. Appl. Surf. Sci. 2017, 412, 214–222. [Google Scholar] [CrossRef]
- Benoit, M.; Bataillon, C.; Gwinner, B.; Miserque, F.; Orazem, M.E.; Sánchez-Sánchez, C.M.; Tribollet, B.; Vivier, V. Comparison of different methods for measuring the passive film thickness on metals. Electrochim. Acta 2016, 201, 340–347. [Google Scholar] [CrossRef]
- Uhlig, H.H.; Revie, R.W. Corrosion and Corrosion Control; John Wiley and Sons: Hoboken, NJ, USA, 1985; p. 69. [Google Scholar]
- Kirchheim, R.; Heine, B.; Fischmeister, H.; Hofmann, S.; Knote, H.; Stolz, U. The passivity of iron-chromium alloys. Corros. Sci. 1989, 29, 899–917. [Google Scholar] [CrossRef]
- Tsukada, M.; Adachi, H.; Satoko, C. Theory of electronic structure of oxide surfaces. Progress. Surf. Sci. 1983, 14, 113–174. [Google Scholar] [CrossRef]
- Fromhold, A.T., Jr.; Kruger, J. Space-charge and concentration-gradient effects on anodic oxide film formation. J. Electrochem. Soc. 1973, 120, 722–729. [Google Scholar] [CrossRef]
- Sato, N. An overview on the passivity of metals. Corros. Sci. 1990, 31, 1–19. [Google Scholar] [CrossRef]
- Simões, A.M.P.; Ferreira, M.G.S.; Rondot, B.; da Cunha Belo, M. Study of passive films formed on AISI 304 stainless steel by impedance measurements and photoelectrochemistry. J. Electrochem. Soc. 1990, 137, 82–87. [Google Scholar] [CrossRef]
- Maurice, V.; Yang, W.P.; Marcus, P. X-ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surfaces. J. Electrochem. Soc. 1998, 145, 909–920. [Google Scholar] [CrossRef]
- Lorang, G.; da Cunha Belo, M.; Simões, A.M.P.; Ferreira, M.G.S. Chemical composition of passive films on AISI 304 stainless steel. J. Electrochem. Soc. 1994, 141, 3347–3356. [Google Scholar] [CrossRef]
- Marcus, P.; Bussell, M.E. XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels. Appl. Surf. Sci. 1992, 19, 7–21. [Google Scholar] [CrossRef]
- De Vito, E.; Marcus, P. XPS study of passive films formed on molybdenum-implanted austenitic stainless steels. Surf. Interface Anal. 1992, 19, 403–408. [Google Scholar] [CrossRef]
- Hoar, T.P.; Mears, D.C.; Rothwell, G.P. The relationships between anodic passivity, brightening and pitting. Corros. Sci. 1965, 5, 279–289. [Google Scholar] [CrossRef]
- Macdonald, D.D. Passivity the key to our metals-based civilization. Pure Appl. Chem. 1999, 71, 951–978. [Google Scholar] [CrossRef]
- Sakashita, M.; Sato, N. The effect of molybdate anion on the ion-selectivity of hydrous ferric oxide films in chloride solutions. Corros. Sci. 1977, 17, 473–486. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, Y.S. A study on effects of Mo addition on the corrosion resistance of stainless steels. J. Corros. Sci. Soc. Korea 1989, 18, 67–76. [Google Scholar]
- Kim, Y.S.; Park, Y.S. A study on effects of N addition on the passivating mechanism of stainless steels. J. Corros. Sci. Soc. Korea 1989, 18, 97–108. [Google Scholar]
- Fattah-alhosseini, A. Passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution studied by Mott–Schottky analysis in conjunction with the point defect model. Arab. J. Chem. 2016, 9, S1342–S1348. [Google Scholar] [CrossRef]
- Cho, E.A.; Kwon, H.S. A study on the electronic properties of passive film formed on Fe-20Cr by photoelectrochemical and Mott-Schottky analysis. Corros. Sci. Technol. 2002, 31, 275–280. [Google Scholar]
- Khobragade, N.N.; Bansod, A.V.; Patil, A.P.; Bihade, M. Effect of various ratios of nitric acid–chloride on electronic properties of passive films on AISI 304L stainless steel. Int. J. Mater. Res. 2018, 109, 522–531. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Sonamia, M.A.; Loghmani, A.; Shoja, F.Z. Passivity of AISI 316L stainless steel as a function of nitric concentration. J. Adv. Mater. Process. 2014, 2, 21–30. [Google Scholar]
- Ohtsuka, T.; Ueda, M.; Abe, M. Aging of passive oxide on SUS304 stainless steel in a sulfuric acid solution. J. Electrochem. Soc. 2016, 163, C459–C469. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Farahani, H.; Imantalab, O. The effect of solution concentration on the electrochemical behaviour of AISI 321 stainless steel in sulfuric solutions. Int. J. Iron Steel Soc. Iran 2012, 9, 19–26. [Google Scholar]
- Ohtsuka, T.; Abe, M.; Ishii, T. The effect of impurity concentration and Cr content on the passive oxide films in ferritic stainless steels. J. Electrochem. Soc. 2015, 162, C528–C535. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Aghamohammadi, H.; Safa, A.B. Electrochemical behavior assessment of Alloy 22 (UNS N06022) in hydrochloric acid solutions by electrochemical impedance spectroscopy and Mott–Schottky analyses. Anal. Bioanal. Electrochem. 2015, 7, 728–738. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, C.; Jiang, M. Evolution of passive film on 304 stainless steel during nitric acid passivation. Steel Res. Int. 2022, 93, 2200026. [Google Scholar] [CrossRef]
- Ferreira, M.G.S.; Hakiki, N.E.; Goodlet, G.; Faty, S.; Simões, A.M.P.; da Cunha Belo, M. Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel. Electrochim. Acta 2001, 46, 3767–3776. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Vafaeian, S. Comparison of the electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott–Schottky analysis and EIS measurements. J. Alloys Compd. 2015, 639, 301–307. [Google Scholar] [CrossRef]
- Jiang, R.; Chen, C.; Zheng, S. The non-linear fitting method to analyze the measured M–S plots of bipolar passive films. Electrochim. Acta 2010, 55, 2498–2504. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.; Yang, C.; Shen, M.; Zhang, X.; Xi, T.; Yin, L.; Zhao, H.; Liu, X.; Liu, L.; et al. Corrosion resistance of Cu-bearing 316L stainless steel tuned by various passivation potentials. Surf. Interface Anal. 2021, 53, 592–602. [Google Scholar] [CrossRef]
- Toor, I.H.; Ejaz, M.; Kwon, H.S. Mott–Schottky analysis of passive films on Cu-containing Fe–20Cr–xCu (x = 0, 4) alloys. Corros. Eng. Sci. Technol. 2014, 49, 390–395. [Google Scholar] [CrossRef]
- Liang, D.D.; Wei, X.S.; Chang, C.T.; Li, J.W.; Wang, Y.; Wang, X.M.; Shen, J. Effects of W addition on the electrochemical behaviour and passive film properties of Fe-based amorphous alloys in acetic acid solution. Acta Metall. Sin. 2018, 31, 1098–1108. [Google Scholar] [CrossRef]
- Eashwar, M.; Sreedhar, G.; Lakshman Kumar, A.; Hariharasuthan, R.; Kennedy, J. The enrichment of surface passive film on stainless steel during biofilm development in coastal seawater. J. Bio Adhes. Biofilm Res. 2015, 31, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Too, I.H. Mott-Schottky analysis of passive films on Si containing stainless steel alloys. J. Electrochem. Soc. 2011, 158, C391–C395. [Google Scholar] [CrossRef]
- Cheng, X.; Li, X.; Yang, L.; Du, C. Corrosion resistance of 316L stainless steel in acetic acid by EIS and Mott-Schottky. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2008, 23, 574–578. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Park, J.; Kim, D.-I.; Shin, B.-H.; Yoon, J.-H. Effects of passivation with Cu and W on the corrosion properties of super duplex stainless steel PRE 42. Metals 2024, 14, 284. [Google Scholar] [CrossRef]
- Wang, Z.; Paschalidou, E.-M.; Seyeux, A.; Zanna, S.; Maurice, V.; Marcus, P. Mechanisms of Cr and Mo enrichments in the passive oxide film on 316L austenitic stainless steel. Front. Mater. 2019, 6, 232. [Google Scholar] [CrossRef]
- Maurice, V.; Peng, H.; Klein, L.H.; Seyeux, A.; Zanna, S.; Marcus, P. Effects of molybdenum on the composition and nanoscale morphology of passivated austenitic stainless steel surfaces. Faraday Discuss. 2015, 180, 151–170. [Google Scholar] [CrossRef]
- Holliday, J.E.; Frankenthal, R.P. Characterization of passivating films on Fe-Cr alloys by soft X-ray spectroscopy. J. Electrochem. Soc. 1972, 199, 1190–1192. [Google Scholar] [CrossRef]
- Brooks, A.R.; Clayton, C.R.; Doss, K.; Lu, Y.C. On the role of Cr in the passivity of stainless steel. J. Electrochem. Soc. 1986, 133, 2459–2464. [Google Scholar] [CrossRef]
- Clayton, C.R.; Lu, Y.C. A bipolar model of the passivity of stainless steels—III. The mechanism of MoO42– formation and incorporation. Corros. Sci. 1989, 29, 881–898. [Google Scholar] [CrossRef]
- Osozawa, K.; Engell, H.J. The anodic polarization curves of iron–nickel–chromium alloys. Corros. Sci. 1966, 6, 389–393. [Google Scholar] [CrossRef]
- Olsson, C.O.A.; Landolt, D. Passive films on stainless steels—Chemistry, structure and growth. Electrochim. Acta 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- Brookes, H.C.; Bayles, J.W.; Graham, F.J. Nucleation and growth of anodic films on stainless steel alloys: I. Influence of minor alloying elements and applied potential on passive film growth. J. Appl. Electrochem. 1990, 20, 223–230. [Google Scholar] [CrossRef]
- Ameer, M.A.; Fekry, A.M.; Heakal, F.E. Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions. Electrochim. Acta 2004, 50, 43–49. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sawada, Y. The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions. Corros. Sci. 1977, 17, 425–445. [Google Scholar] [CrossRef]
- Clayton, C.R.; Lu, Y.C. A bipolar model of the passivity of stainless steel: The role of Mo addition. J. Electrochem. Soc. 1986, 133, 2465–2473. [Google Scholar] [CrossRef]
- Ogawa, H.; Omata, H.; Itoh, I.; Okada, H. Auger electron spectroscopic and electrochemical analysis of the effect of alloying elements on the passivation behavior of stainless steels. Corrosion 1978, 34, 52–60. [Google Scholar] [CrossRef]
- Akiyama, E.; Kawashima, A.; Asami, K.; Hashimoto, K. The effects of alloying elements on the passivity of sputter-deposited amorphous Al–Cr–Mo alloys in 1 M HCl. Corros. Sci. 1996, 38, 1281–1294. [Google Scholar] [CrossRef]
- Bui, N.; Irhzo, A.; Dabosi, F.; Limouzin-Maire, Y. On the mechanism for improved passivation by additions of tungsten to austenitic stainless steels. Corrosion 1983, 39, 491–496. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.K. The improved passivation of iron induced by additions of tungsten. Corros. Sci. 1990, 30, 53–58. [Google Scholar] [CrossRef]
- Di Paola, A.; Di Quarto, F.; Sunseri, C. Electrochromism in anodically formed tungsten oxide films. J. Electrochem. Soc. 1978, 125, 1344–1347. [Google Scholar] [CrossRef]
- Hakiki, N.E.; da Cunha Belo, M.; Simões, A.M.P.; Ferreira, M.G.S. Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements. J. Electrochem. Soc. 1998, 145, 3821–3829. [Google Scholar] [CrossRef]
- Hakiki, N.B.; Boudin, S.; Rondot, B.; da Cunha Belo, M. The electronic structure of passive films formed on stainless steels. Corros. Sci. 1995, 37, 1809–1822. [Google Scholar] [CrossRef]
- Hakiki, N.E.; da Cunha Belo, M. Electronic structure of passive films formed on molybdenum-containing ferritic stainless steels. J. Electrochem. Soc. 1996, 143, 3088–3094. [Google Scholar] [CrossRef]
- Li, D.G.; Chen, D.R.; Liang, P. Enhancement of cavitation erosion resistance of 316L stainless steel by adding molybdenum. Ultrason. Sonochem. 2017, 35, 375–381. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Q. Influence of molybdenum as alloying element on corrosion resistance of stainless steel rebar in simulated concrete pore solution with different pH. Int. J. Electrochem. Sci. 2020, 15, 7624–7632. [Google Scholar] [CrossRef]
- Montemor, M.F.; Simões, A.M.P.; Ferreira, M.G.S.; da Cunha Belo, M. The role of Mo in the chemical composition and semiconductive behaviour of oxide films formed on stainless steels. Corros. Sci. 1999, 41, 17–34. [Google Scholar] [CrossRef]
- Ma, M.; He, C.; Liu, H.; Chen, L. Influence of cerium and tungsten addition on the passive behaviour of 444-type ferritic stainless steels. Int. J. Electrochem. Sci. 2019, 14, 2277–2289. [Google Scholar] [CrossRef]
- ASTM G5-2004; Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements. ASTM International: West Conshohocken, PA, USA, 2004.
- ASTM G3-2004; Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing. ASTM International: West Conshohocken, PA, USA, 2004.
- Kim, Y.S. Synergistic effect of nitrogen and molybdenum on localized corrosion of stainless steels. Corros. Sci. Technol. 2010, 9, 20–28. [Google Scholar]
- Kim, Y.S. Influences of alloyed molybdenum and molybdate addition on the corrosion properties and passive film composition of stainless steels. Met. Mater. 1998, 4, 183–191. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J. The influence of W and Mo additions on the pitting resistance and the passivation of ferritic stainless steels. J. Corros. Sci. Soc. Korea 1997, 26, 435–445. [Google Scholar]
- Oh, K.-T.; Kim, Y.-S.; Park, Y.-S.; Kim, K.-N. Properties of super stainless steels for orthodontic applications. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 15, 183–194. [Google Scholar] [CrossRef]
- Choi, S.H.; Yoo, Y.R.; Kim, Y.S. Dynamic variation in the semiconductive tendency of the passive film on duplex stainless steel in corrosion environments. Materials 2024, 17, 5963. [Google Scholar] [CrossRef]
- Choi, S.H.; Yoo, Y.R.; Kim, Y.S. Semiconductive tendency of the passive film formed on super austenitic stainless steel SR-50A in acidic or alkaline chloride solutions. Crystals 2024, 14, 766. [Google Scholar] [CrossRef]
Alloy | Chemical Composition, wt. % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr | Mo | W | Si | Ni | Mn | C | S | P | Fe | |
F-23Cr | 23.0 | 3.54 | 1.32 | 0.5 | 1.12 | 0.76 | 0.006 | 0.006 | 0.004 | Bal. |
F-26Cr | 26.0 | 3.53 | 1.33 | 0.53 | 1.12 | 0.76 | 0.007 | 0.007 | 0.005 | Bal. |
F-29Cr | 28.8 | 3.54 | 1.34 | 0.54 | 1.12 | 0.74 | 0.009 | 0.006 | 0.003 | Bal. |
F-0Mo | 28.9 | 0.06 | 1.33 | 0.52 | 1.12 | 0.75 | 0.011 | 0.007 | 0.005 | Bal. |
F-2Mo | 28.8 | 2.00 | 1.34 | 0.52 | 1.13 | 0.74 | 0.011 | 0.007 | 0.004 | Bal. |
F-3.5Mo | 28.8 | 3.54 | 1.34 | 0.54 | 1.12 | 0.74 | 0.009 | 0.006 | 0.003 | Bal. |
F-0W | 28.7 | 3.55 | 0.02 | 0.52 | 1.20 | 0.75 | 0.007 | 0.008 | 0.005 | Bal. |
F-1.5W | 28.8 | 3.54 | 1.34 | 0.54 | 1.12 | 0.74 | 0.009 | 0.006 | 0.003 | Bal. |
F-3W | 28.7 | 3.58 | 2.93 | 0.54 | 1.16 | 0.74 | 0.013 | 0.006 | 0.004 | Bal. |
Species | CrM | Cr2O3 | Cr(OH)3 | CrO3 | CrO42− |
Binding Energy, eV | 574.1 | 576.3 | 577.3 | 578.1 | 579.3 |
Species | MoM | MoO2 | MoO(OH)2 | MoO3 | MoO42− |
Binding Energy, eV | 227.9 230.9 | 228.1 231.9 | 230.2 233.5 | 232.4 235.4 | 232.2 234.8 |
Species | WM | WO2 | WO3 | WO42− | |
Binding Energy, eV | 30.8 32.95 | 32.5 34.55 | 34.9 35.5 37.65 37.95 | 36.3 |
Alloy | F-23Cr | F-26Cr | F-29Cr | F-2Mo | F-3.5Mo | F-0W | F-1.5W | F-3W |
---|---|---|---|---|---|---|---|---|
Efb by P slope, V (SCE) | 0.13 | 0.098 | 0.10 | 0.10 | 0.10 | 0.093 | 0.10 | 0.10 |
Efb by N slope, V (SCE) | 0.078 | 0.050 | 0.037 | 0.058 | 0.037 | 0.072 | 0.044 | 0.033 |
NA (1028 cm–3) | 1.36 | 1.31 | 1.06 | 1.60 | 1.06 | 1.30 | 1.06 | 1.06 |
ND (1028 cm–3) | 1.43 | 1.33 | 1.13 | 1.45 | 1.13 | 1.08 | 1.11 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.-H.; Yoo, Y.-R.; Kim, Y.-C.; Kim, Y.-S. Effect of Cr, Mo, and W Contents on the Semiconductive Properties of Passive Film of Ferritic Stainless Steels. Crystals 2025, 15, 723. https://doi.org/10.3390/cryst15080723
Choi S-H, Yoo Y-R, Kim Y-C, Kim Y-S. Effect of Cr, Mo, and W Contents on the Semiconductive Properties of Passive Film of Ferritic Stainless Steels. Crystals. 2025; 15(8):723. https://doi.org/10.3390/cryst15080723
Chicago/Turabian StyleChoi, Seung-Heon, Young-Ran Yoo, Young-Cheon Kim, and Young-Sik Kim. 2025. "Effect of Cr, Mo, and W Contents on the Semiconductive Properties of Passive Film of Ferritic Stainless Steels" Crystals 15, no. 8: 723. https://doi.org/10.3390/cryst15080723
APA StyleChoi, S.-H., Yoo, Y.-R., Kim, Y.-C., & Kim, Y.-S. (2025). Effect of Cr, Mo, and W Contents on the Semiconductive Properties of Passive Film of Ferritic Stainless Steels. Crystals, 15(8), 723. https://doi.org/10.3390/cryst15080723