P-2B Co-Doping Effects of the Electronic and Optical Properties of Diamond: A First-Principles Study Based on the HSE06 Generalized Function
Abstract
1. Introduction
2. Calculation Methods
3. Results and Discussion
3.1. Intrinsic Diamond
3.2. Determination of the Doping Structure
3.3. Electronic Structure
3.3.1. Band Structure
3.3.2. Density of States
3.4. Optical Properties
3.4.1. Dielectric Functions
3.4.2. Electrical Conductivity
3.4.3. Absorption Coefficient and Reflectance
3.4.4. Refractive Index and Extinction Coefficient
3.4.5. Energy Loss Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, L.; Tian, L.; Wang, H.; Meng, L.; Feng, C. (Invited) Preparation of N-Type and P-Type Doped Single Crystal Diamonds with Laser-Induced Doping and Microwave Plasma Chemical Vapor Deposition. ECS Trans. 2024, 113, 23. [Google Scholar] [CrossRef]
- Liao, M. Progress in semiconductor diamond photodetectors and MEMS sensors. Funct. Diam. 2022, 1, 29–46. [Google Scholar] [CrossRef]
- Perez, G.; Maréchal, A.; Chicot, G.; Lefranc, P.; Jeannin, P.-O.; Eon, D.; Rouger, N. Diamond semiconductor performances in power electronics applications. Diam. Relat. Mater. 2020, 110, 108154. [Google Scholar] [CrossRef]
- Ahmad, H.; Motoki, K.; Clinton, E.A.; Matthews, C.M.; Engel, Z.; Doolittle, W.A. Comprehensive Analysis of Metal Modulated Epitaxial GaN. ACS Appl. Mater. Interfaces 2020, 12, 37693–37712. [Google Scholar] [CrossRef] [PubMed]
- Fabien, C.A.M.; Maros, A.; Honsberg, C.B.; Doolittle, W.A. III-Nitride Double-Heterojunction Solar Cells With High In-Content InGaN Absorbing Layers: Comparison of Large-Area and Small-Area Devices. IEEE J. Photovolt. 2016, 6, 460–464. [Google Scholar] [CrossRef]
- Su, Y.-K.; Chiou, Y.-Z.; Juang, F.-S.; Chang, S.-J.; Sheu, J.-K. GaN and InGaN Metal-Semiconductor-Metal Photodetectors with Different Schottky Contact Metals. Jpn. J. Appl. Phys. 2001, 40, 2996. [Google Scholar] [CrossRef]
- Shimaoka, T.; Koizumi, S.; Kaneko, J.H. Recent progress in diamond radiation detectors. Funct. Diam. 2022, 1, 205–220. [Google Scholar] [CrossRef]
- Crawford, K.G.; Maini, I.; Macdonald, D.A.; Moran, D.A.J. Surface transfer doping of diamond: A review. Prog. Surf. Sci. 2021, 96, 100613. [Google Scholar] [CrossRef]
- Achard, J.; Silva, F.; Issaoui, R.; Brinza, O.; Tallaire, A.; Schneider, H.; Isoird, K.; Ding, H.; Koné, S.; Pinault, M.A.; et al. Thick boron doped diamond single crystals for high power electronics. Diam. Relat. Mater. 2011, 20, 145–152. [Google Scholar] [CrossRef]
- Lambert, N.; Weiss, Z.; Klimša, L.; Kopeček, J.; Gedeonová, Z.; Hubík, P.; Mortet, V. Highly phosphorus-doped polycrystalline diamond growth and properties. Diam. Relat. Mater. 2022, 125, 108964. [Google Scholar] [CrossRef]
- Christensen, J.S.; Radamson, H.H.; Kuznetsov, A.Y.; Svensson, B.G. Phosphorus and boron diffusion in silicon under equilibrium conditions. Appl. Phys. Lett. 2003, 82, 2254–2256. [Google Scholar] [CrossRef]
- Stenger, I.; Pinault-Thaury, M.-A.; Kociniewski, T.; Lusson, A.; Chikoidze, E.; Jomard, F.; Dumont, Y.; Chevallier, J.; Barjon, J. Impurity-to-band activation energy in phosphorus doped diamond. J. Appl. Phys. 2013, 114, 073711. [Google Scholar] [CrossRef]
- Das, D.; Kandasami, A.; Ramachandra Rao, M.S. Realization of highly conducting n-type diamond by phosphorus ion implantation. Appl. Phys. Lett. 2021, 118, 102102. [Google Scholar] [CrossRef]
- Liu, D.Y.; Hao, L.C.; Teng, Y.; Qin, F.; Shen, Y.; Tang, K.; Ye, J.D.; Zhu, S.M.; Zhang, R.; Zheng, Y.D.; et al. Nitrogen modulation of boron doping behavior for accessible n-type diamond. APL Mater. 2021, 9, 081106. [Google Scholar] [CrossRef]
- Wu, Y.; Tong, J.; Ruan, L.; Luo, F.; Liu, G.; Zhang, R.; Han, X.; Zhang, Y.; Tian, F.; Zhang, X. N-type diamond semiconductor induced by co-doping selenium and boron. Comput. Mater. Sci. 2021, 196, 110515. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, X.; Zhang, Y.; Cheng, C.; Guo, Y.; Gan, Z.; Liu, S.; Hao, Y. Theoretical study of n-type diamond with Li doping and Li-B co-doping: A density functional simulation. Diam. Relat. Mater. 2023, 131, 109544. [Google Scholar] [CrossRef]
- Saha, N.C.; Kim, S.W.; Oishi, T.; Kasu, M. 875-MW/cm2 Low-Resistance NO2 p-Type Doped Chemical Mechanical Planarized Diamond MOSFETs. IEEE Electron Device Lett. 2022, 43, 777–780. [Google Scholar] [CrossRef]
- Saha, N.C.; Kim, S.W.; Oishi, T.; Kawamata, Y.; Koyama, K.; Kasu, M. 345-MW/cm2 2608-V NO2 p-Type Doped Diamond MOSFETs With an Al2O3 Passivation Overlayer on Heteroepitaxial Diamond. IEEE Electron Device Lett. 2021, 42, 903–906. [Google Scholar] [CrossRef]
- Xing, K.; Xiang, Y.; Jiang, M.; Creedon, D.L.; Akhgar, G.; Yianni, S.A.; Xiao, H.; Ley, L.; Stacey, A.; McCallum, J.C.; et al. MoO3 induces p-type surface conductivity by surface transfer doping in diamond. Appl. Surf. Sci. 2020, 509, 144890. [Google Scholar] [CrossRef]
- Cañas, J.; Dussarrat, C.; Teramoto, T.; Masante, C.; Gutierrez, M.; Gheeraert, E. High quality SiO2/diamond interface in O-terminated p-type diamond MOS capacitors. Appl. Phys. Lett. 2022, 121, 072101. [Google Scholar] [CrossRef]
- Braunstein, G.; Kalish, R. Effective p-type doping of diamond by boron ion implantation. J. Appl. Phys. 1983, 54, 2106–2108. [Google Scholar] [CrossRef]
- Hu, X.; Björkman, T.; Lipsanen, H.; Sun, L.; Krasheninnikov, A.V. Solubility of Boron, Carbon, and Nitrogen in Transition Metals: Getting Insight into Trends from First-Principles Calculations. J. Phys. Chem. Lett. 2015, 6, 3263–3268. [Google Scholar] [CrossRef]
- Gao, N.; Gao, L.; Yu, H. First-principles study of N and S co-doping in diamond. Diam. Relat. Mater. 2023, 132, 109651. [Google Scholar] [CrossRef]
- Shen, S.; Shen, W.; Liu, S.; Li, H.; Chen, Y.; Qi, H. First-principles calculations of co-doping impurities in diamond. Mater. Today Commun. 2020, 23, 100847. [Google Scholar] [CrossRef]
- Sun, X.; Wu, G.; Shen, S.; Wang, Q.; Li, R.; Guo, Y.; Liu, S. Insight into BS ratio model and surface atom interactions of co-doping diamond: First-principles studies. Diam. Relat. Mater. 2023, 135, 109824. [Google Scholar] [CrossRef]
- Li, Y.; Jia, X.; Ma, H.-a.; Zhang, J.; Wang, F.; Chen, N.; Feng, Y. Electrical properties of diamond single crystals co-doped with hydrogen and boron. CrystEngComm 2014, 16, 7547–7551. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Su, T.; Hu, M.; Ma, H.; Jia, X.; Li, Y. Synthesis of N-type semiconductor diamonds with sulfur, boron co-doping in FeNiMnCo-C system at high pressure and high temperature *. Chin. Phys. B 2017, 26, 058102. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Hu, M.; Li, M.; Liu, X.; Su, T.; Yu, K.; Han, F. The first principle study and experimental of boron synergistic sulfur doping in diamond. Mater. Today Commun. 2020, 24, 101021. [Google Scholar] [CrossRef]
- Konov, V.I. Carbon photonics. Quantum Electron. 2015, 45, 1043–1049. [Google Scholar] [CrossRef]
- Kunuku, S.; Ficek, M.; Wieloszynska, A.; Tamulewicz-Szwajkowska, M.; Gajewski, K.; Sawczak, M.; Lewkowicz, A.; Ryl, J.; Gotszalk, T.; Bogdanowicz, R. Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films. Nanotechnology 2022, 33, 23. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Cui, J.; Feng, L.; Yu, H.; Su, T.; Hu, M.; Yu, K.; Han, F.; Ma, H.; et al. n-type large single crystal diamond with S doping and B-S co-doping grown in FeNi–C system. Int. J. Refract. Met. Hard Mater. 2019, 81, 100–110. [Google Scholar] [CrossRef]
- Fan, K.; Tang, K.; Zhang, M.; Wu, K.; Zhao, G.; Huang, Y.; Zhu, S.; Ye, J.; Gu, S. The boron-phosphorous co-doping scheme for possible n-type diamond from first principles. Comput. Mater. Sci. 2023, 222, 112–113. [Google Scholar] [CrossRef]
- Burke, K.; Wagner, L.O. DFT in a nutshell. Int. J. Quantum Chem. 2013, 113, 96–101. [Google Scholar] [CrossRef]
- Segall, M.D.; Philip, J.D.L.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Chulhai, D.V.; Goodpaster, J.D. Projection-Based Correlated Wave Function in Density Functional Theory Embedding for Periodic Systems. J. Chem. Theory Comput. 2018, 14, 1928–1942. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Tang, K.; Wu, K.; Zhu, S.; Zhao, G.; Huang, Y.; Ye, J.; Gu, S. First principles investigation on the boron-oxygen complexes in diamond. Comput. Mater. Sci. 2023, 216, 111867. [Google Scholar] [CrossRef]
- Sahu, B.B.; Yadav, T.; Moharana, S.; Olusegun, S.J. DFT studies of diamane and 2D diamonds: Properties and applications. In Diamane: Fabrication, Properties and New Advances in 2D Diamond; IOP Publishing Ltd.: Bristol, UK, 2024; pp. 1–29. [Google Scholar] [CrossRef]
- Rusevich, L.L.; Kotomin, E.A.; Popov, A.I.; Aiello, G.; Scherer, T.A.; Lushchik, A. The electronic, vibrational and dielectric properties of diamond crystals with neutral vacancies: First principles study. Opt. Mater. 2024, 150, 115222. [Google Scholar] [CrossRef]
- Resendiz-Hernandez, G.; Leal-Perez, J.E.; Herrera-Basurto, R.; Mercader-Trejo, F.E.; Auciello, O.; Hurtado-Macias, A. Structural properties, bandgap, and complex dielectric function in Bi2Te3 thermoelectric by Valence Electron Energy Loss Spectroscopy (VEELS) analysis. J. Alloys Compd. 2023, 965, 171420. [Google Scholar] [CrossRef]
- Gajewski, W.; Achatz, P.; Williams, O.A.; Haenen, K.; Bustarret, E.; Stutzmann, M.; Garrido, J.A. Electronic and optical properties of boron-doped nanocrystalline diamond films. Phys. Rev. B 2009, 79, 045206. [Google Scholar] [CrossRef]
- Mooney, J.; Kambhampati, P. Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra. J. Phys. Chem. Lett. 2013, 4, 3316–3318. [Google Scholar] [CrossRef]
Complex | Total Energy (eV) | Complex | Total Energy (eV) |
---|---|---|---|
BPB | −10288.2448 | PBB | −10287.9116 |
BPCB | −10288.2525 | PCBB | −10288.0739 |
BPCCB | −10288.2836 | PCCBB | −10287.6711 |
BCPCB | −10288.7557 | PBCB | −10288.4071 |
BCPCCB | −10288.4520 | PCBCB | −10288.4332 |
BCCPCCB | −10288.1217 | PCCBCB | −10288.2628 |
PBCCB | −10288.2050 | ||
PCBCCB | −10288.5903 | ||
PCCBCCB | −10288.5303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, M. P-2B Co-Doping Effects of the Electronic and Optical Properties of Diamond: A First-Principles Study Based on the HSE06 Generalized Function. Crystals 2025, 15, 678. https://doi.org/10.3390/cryst15080678
Li W, Wang M. P-2B Co-Doping Effects of the Electronic and Optical Properties of Diamond: A First-Principles Study Based on the HSE06 Generalized Function. Crystals. 2025; 15(8):678. https://doi.org/10.3390/cryst15080678
Chicago/Turabian StyleLi, Weiyin, and Meng Wang. 2025. "P-2B Co-Doping Effects of the Electronic and Optical Properties of Diamond: A First-Principles Study Based on the HSE06 Generalized Function" Crystals 15, no. 8: 678. https://doi.org/10.3390/cryst15080678
APA StyleLi, W., & Wang, M. (2025). P-2B Co-Doping Effects of the Electronic and Optical Properties of Diamond: A First-Principles Study Based on the HSE06 Generalized Function. Crystals, 15(8), 678. https://doi.org/10.3390/cryst15080678