Machine Learning Analysis of Umbilic Defect Annihilation in Nematic Liquid Crystals in the Presence of Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Experimental Data
2.2. Computer Vision and Image Recognition
3. Experimental Results and Discussion
3.1. Variation of Mass Concentration at a Constant Particle Size
3.2. Variation of Particle Size at a Constant Particle Concentration
3.3. Variation of Nanoparticle Size at a Constant Mass Concentration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chuang, I.; Durrer, R.; Turok, N.; Yurke, B. Cosmology in the laboratory: Defect dynamics in liquid crystals. Science 1991, 251, 1336. [Google Scholar] [CrossRef]
- Orihara, H.; Ishibashi, Y. Dynamics of Disclinations in Twisted Nematics Quenched below the Clearing Point. J. Phys. Soc. Jpn. 1986, 55, 2151–2156. [Google Scholar] [CrossRef]
- Orihara, H.; Nagaya, T.; Ishibashi, Y. Collective Motion of an Assembly of Disclinations in the Non-Orthogonally Twisted Nematics Quenched below the Clearing Point. Phys. Soc. Jpn. 1987, 56, 3086–3091. [Google Scholar] [CrossRef]
- Chuang, I.; Turok, N.; Yurke, B. Late-time coarsening dynamics in a nematic liquid crystal. Phys. Rev. Lett. 1991, 66, 2472. [Google Scholar] [CrossRef]
- Chuang, I.; Yurke, B.; Pargellis, A.N.; Turok, N. Coarsening dynamics in uniaxial nematic liquid crystals. Phys. Rev. E 1993, 47, 3343. [Google Scholar] [CrossRef]
- Pargellis, A.N.; Turok, N.; Yurke, B. Monopole-antimonopole annihilation in a nematic liquid crystal. Phys. Rev. Lett. 1991, 67, 1570. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Hotta, H.; Orihara, H.; Ishibashi, Y. Observation of Annihilation Process of Disclinations Emerging from Bubble Domains. J. Phys. Soc. Jpn. 1991, 60, 1572–1578. [Google Scholar] [CrossRef]
- Nagaya, T.; Hotta, H.; Orihara, H.; Ishibashi, Y. Experimental Study of the Coarsening Dynamics of +1 and -1 Disclinations. J. Phys. Soc. Jpn. 1992, 61, 3511–3517. [Google Scholar] [CrossRef]
- Dierking, I.; Archer, P. Imaging liquid crystal defects. RSC Adv. 2013, 3, 26433. [Google Scholar] [CrossRef]
- Hindmarsh, M.B.; Kibble, T.W.B. Cosmic strings. Rep. Prog. Phys. 1995, 58, 411. [Google Scholar] [CrossRef]
- Zurek, W.H. Cosmological experiments in superfluid helium? Nature 1985, 317, 505–508. [Google Scholar] [CrossRef]
- Zurek, W.H. Cosmological experiments in condensed matter system. Phys. Rep. 1996, 276, 177–221. [Google Scholar] [CrossRef]
- Shankar, S.; Souslov, A.; Bowick, M.J.; Marchetti, M.C.; Vitelli, V. Topological active matter. Nat. Rev. Phys. 2022, 4, 380–398. [Google Scholar] [CrossRef]
- Ardaševa, A.; Doostmohammadi, A. Topological defects in biological matter. Nat. Rev. Phys. 2022, 4, 354–356. [Google Scholar] [CrossRef]
- Fardin, M.-A.; Ladoux, B. Living proof of effective defects. Nat. Phys. 2021, 17, 164–173. [Google Scholar] [CrossRef]
- Kralj, M.; Kralj, M.; Kralj, S. Topological Defects in Nematic Liquid Crystals: Laboratory of Fundamental Physics. Phys. Status Solidi A 2021, 218, 2000752. [Google Scholar] [CrossRef]
- Harth, K.; Stannarius, R. Topological Point Defects of Liquid Crystals in Quasi-Two-Dimensional Geometries. Front. Phys. 2020, 8, 112. [Google Scholar] [CrossRef]
- Shen, Y.; Dierking, I. Annihilation dynamics of topological defects induced by microparticles in nematic liquid crystals. Soft Matter 2019, 15, 8749–8757. [Google Scholar] [CrossRef] [PubMed]
- Imura, H.; Okano, K. Friction coefficient for a moving disinclination in a nematic liquid crystal. Phys. Lett. A 1973, 42, 403–404. [Google Scholar] [CrossRef]
- Toyoki, H. Pair annihilation of point like topological defects in the ordering process of quenched systems. Phys. Rev. A 1990, 42, 911. [Google Scholar] [CrossRef]
- Mondello, M.; Goldenfeld, N. Scaling and vortex dynamics after the quench of a system with a continuous symmetry. Phys. Rev. A 1990, 42, 5865. [Google Scholar] [CrossRef]
- Toyoki, H. Cell dynamics simulation for the phase ordering of nematic liquid crystals. Phys. Rev. E 1993, 47, 2558. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.G.; Ginzburg, V.V.; Muzny, C.D.; Clark, N.A. Annihilation rate and scaling in a two-dimensional system of charged particles. Phys. Rev. E 1995, 51, 411. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Muthukumar, M. Annihilation kinetics of liquid crystal defects. J. Chem. Phys. 1997, 106, 7822–7828. [Google Scholar] [CrossRef]
- Pargellis, A.N.; Finn, P.; Goodby, J.W.; Panizza, P.; Yurke, B.; Cladis, P.E. Defect dynamics and coarsening dynamics in smectic-C films. Phys. Rev. A 1992, 46, 7765. [Google Scholar] [CrossRef]
- Ding, D.-K.; Thomas, E.L. Structures of Point Integer Disclinations and Their Annihilation Behavior in Thermotropic Liquid Crystal Polyesters. Mol. Cryst. Liq. Cryst. 1994, 241, 103–117. [Google Scholar] [CrossRef]
- Wang, W.; Shiwaku, T.; Hashimoto, T. Experimental study of dynamics of topological defects in nematic polymer liquid crystals. J. Chem. Phys. 1998, 108, 1614–1625. [Google Scholar] [CrossRef]
- Rapini, A. Umbilics: Static properties and shear-induced displacements. J. Phys. 1973, 34, 629–633. [Google Scholar] [CrossRef]
- Saupe, A. Disclinations and Properties of the Director field in Nematic and Cholesteric Liquid Crystals. Mol. Cryst. Liq. Cryst. 1973, 21, 211–238. [Google Scholar] [CrossRef]
- Meyer, R.B. Point Disclinations at a Nematic-lsotropic Liquid Interface. Mol. Cryst. Liq. Cryst. 1972, 16, 355–369. [Google Scholar] [CrossRef]
- Dierking, I.; Marshall, O.; Wright, J.; Bulleid, N. Annihilation dynamics of umbilical defects in nematic liquid crystals under applied electric fields. Phys. Rev. E 2005, 71, 061709. [Google Scholar] [CrossRef]
- Dierking, I.; Ravnik, M.; Lark, E.; Healey, J.; Alexander, G.P.; Yeomans, J.M. Anisotropy in the annihilation dynamics of umbilic defects in nematic liquid crystals. Phys. Rev. E 2012, 85, 021703. [Google Scholar] [CrossRef] [PubMed]
- Beigmohammadi, M.; Sadigh, M.K.; Poursamad, J. Dielectric anisotropy changes in MBBA liquid crystal doped with barium titanate by a new method. Sci. Rep. 2024, 14, 5756. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.; Solawetz, J. Yolov5 is Here. 2020. Available online: https://blog.roboflow.com/yolov5-is-here/ (accessed on 5 January 2025).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, realtime object detection. arXiv 2015, arXiv:1506.02640. [Google Scholar]
- Patel, M. Detailed Information on Different Versions of YOLO. Available online: https://towardsai.net/ (accessed on 5 January 2025).
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and real-time tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017. [Google Scholar] [CrossRef]
- Missaoui, A.; Harth, K.; Salamon, P.; Stannarius, R. Annihilation of point defect pairs in freely suspended liquid-crystal films. Phys Rev Res. 2020, 2, 013080. [Google Scholar] [CrossRef]
- Tang, X.; Selinger, J.V. Annihilation trajectory of defects in smectic-C films. Phys. Rev. E 2020, 102, 012702. [Google Scholar] [CrossRef] [PubMed]
- Missaoui, A.; Lacaze, E.; Eremin, A.; Stannarius, R. Observation of Backflow during the Annihilation of Topological Defects in Freely Suspended Smectic Films. Crystals 2021, 11, 430. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dierking, I.; Moyle, A.; Cepparulo, G.M.; Skingle, K.; Hernández, L.; Raidal, J. Machine Learning Analysis of Umbilic Defect Annihilation in Nematic Liquid Crystals in the Presence of Nanoparticles. Crystals 2025, 15, 214. https://doi.org/10.3390/cryst15030214
Dierking I, Moyle A, Cepparulo GM, Skingle K, Hernández L, Raidal J. Machine Learning Analysis of Umbilic Defect Annihilation in Nematic Liquid Crystals in the Presence of Nanoparticles. Crystals. 2025; 15(3):214. https://doi.org/10.3390/cryst15030214
Chicago/Turabian StyleDierking, Ingo, Adam Moyle, Gabriele Maria Cepparulo, Katherine Skingle, Laura Hernández, and Juhan Raidal. 2025. "Machine Learning Analysis of Umbilic Defect Annihilation in Nematic Liquid Crystals in the Presence of Nanoparticles" Crystals 15, no. 3: 214. https://doi.org/10.3390/cryst15030214
APA StyleDierking, I., Moyle, A., Cepparulo, G. M., Skingle, K., Hernández, L., & Raidal, J. (2025). Machine Learning Analysis of Umbilic Defect Annihilation in Nematic Liquid Crystals in the Presence of Nanoparticles. Crystals, 15(3), 214. https://doi.org/10.3390/cryst15030214