Mössbauer and Optical Investigations on Sr Doped M-Type BaFe12O19 Hexaferrites Produced via Autocombustion
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Structural and Mössbauer Studies
3.2. Optical Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albanese, G.; Watts, B.E.; Leccabue, F.; Castanon, S.D. Mössbauer and magnetic studies of PbFe12−xCrxO19 hexagonal ferrites. J. Magn. Magn. Mater. 1998, 184, 337–343. [Google Scholar] [CrossRef]
- Ounnunkada, S.; Winotai, P. Properties of Cr-substituted M-type barium ferrites prepared by nitrate–citrate gel-autocombustion process. J. Magn. Magn. Mater. 2006, 301, 292–300. [Google Scholar] [CrossRef]
- Slimani, Y.; Baykal, A.; Manikandan, A. Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. J. Magn. Magn. Mater. 2018, 458, 204–212. [Google Scholar] [CrossRef]
- Slimani, Y.; Almessiere, M.A.; Baykal, A. AC susceptibility study of Cu substituted BaFe12O19 nanohexaferrites. Ceram. Int. 2018, 44, 13097–13105. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Baykal, A. Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. J. Alloys Compd. 2018, 762, 389–397. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; El Sayed, H.S.; Baykal, A. Ce-Y co-substituted strontium nanohexaferrites: AC susceptibility and Mössbauer studies. Ceram. Int. 2018, 44, 12520–12527. [Google Scholar] [CrossRef]
- Wohlfarth, E.P. (Ed.) Ferromagnetic Materials; North-Holland Publ. Co.: Amsterdam, The Netherlands, 1982. [Google Scholar] [CrossRef]
- Bañuelos-Frías, A.; Martínez-Guajardo, G.; Alvarado-Perea, L.; Canizalez-Dávalos, L.; Ruiz, F.; Valero-Luna, C. Light absorption properties of mesoporous barium hexaferrite, BaFe12O19. Mater. Lett. 2019, 252, 239–243. [Google Scholar] [CrossRef]
- Banihashemi, V.; Ghazi, M.E.; Izadifard, M. Dual Ca–Zn substituted strontium hexaferrite; investigation of structural, magnetic and optical properties. Phys. B Condens. Matter 2021, 605, 412670. [Google Scholar] [CrossRef]
- Mohammed, J.; Suleiman, A.B.; Carol, T.T.T.; Hafeez, H.Y.; Sharma, J.; Maji, P.K.; Kumar, S.G.; Srivastava, A.K. Enhanced dielectric and optical properties of nanoscale barium hexaferrites for optoelectronics and high frequency application. Chin. Phys. B 2018, 27, 128104. [Google Scholar] [CrossRef]
- Asiri, S.; Amir, M.; Güner, S.; Gungunes, H.; Batoo, K.M.; Sertkol, M.; Imran, A. Structural, Optical and Mössbauer Study of Ba1−xCuxFe12O19 (0.5 ≤ x) Nano Hexaferrites. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1446–1456. [Google Scholar] [CrossRef]
- Jayakumar, T.; Raja, C.R.; Arumugam, S. Elucidation of structural, optical, and magnetic properties of Cd/Ni-doped strontium hexaferrite. J. Mater. Sci. Mater. Electron. 2020, 31, 16308–16313. [Google Scholar] [CrossRef]
- Nishkala, K.R.; Rao, R.R.; Mutalik, S.; Daivajna, M.D. Effect of La substitution on the structural and chemical properties of Barium hexaferrite via Mossbauer spectroscopy. Hyperfine Interact. 2023, 244, 7. [Google Scholar] [CrossRef]
- Trukhanov, A.V.; Trukhanov, S.V.; Panina, L.V. Effect of In substitution on structural, magnetic, and Mössbauer properties of M-type hexaferrites. Ceram. Int. 2018, 44, 11676–11680. [Google Scholar] [CrossRef]
- Marouani, Y.; Massoudi, J.; Noumi, M.; Benali, A.; Dhahri, E.; Sanguino, P.; Graça, M.P.F.; Valente, M.A.; Costa, B.F.O. Electrical conductivity and dielectric properties of Sr doped M-type barium hexaferrite BaFe12O19. RSC Adv. 2021, 11, 1531. [Google Scholar] [CrossRef] [PubMed]
- Marouani, Y.; Mabrouki, A.; Dhahri, R.; Dhahri, E.; Costa, B.F.O. Experimental and theoretical studies of structural, magnetic and electronic properties of Ba1−xSrxFe12O19 (x = 0, 0.5, 1) hexaferrites. Inorg. Chem. Com. 2022, 136, 109163. [Google Scholar] [CrossRef]
- Brand, R.A. Normos Mössbauer Fitting Program v.90; Wissel GMbH: Stanberg, Germany, 1994. [Google Scholar]
- Law, D.P.; Blakeney, A.B.; Tkachuk, R. The Kubelka–Munk Equation: Some Practical Considerations. J. Near Infrared Spectrosc. 1996, 4, 189–193. [Google Scholar] [CrossRef]
- Pullar, R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012, 57, 1191. [Google Scholar] [CrossRef]
- Raghuram, N.; Rao, T.S.; Naidu, C.B. Investigations on functional properties of hydrothermally synthesized Ba1−xSrxFe12O19 (x = 0.0–0.8) nanoparticles. Mater. Sci. Semicond. Process. 2019, 94, 136–150. [Google Scholar] [CrossRef]
- Silva, W.M.S.; Ferreira, N.S.; Soares, J.M. Investigation of structural and magnetic properties of nanocrystalline Mn-doped SrFe12O19 prepared by proteic sol–gel process. J. Magn. Magn. Mater. 2015, 395, 263–270. [Google Scholar] [CrossRef]
- Auwal, I.A.; Korkmaz, A.D.; Amir, M.D.; Asiri, S.M.; Baykal, A.; Gungunes, H.; Shistah, S.E. Mössbauer analysis and cation distribution of Zn substituted BaFe12O19 Hexaferrites. J. Sup. Nov. Magn. 2018, 31, 151–156. [Google Scholar] [CrossRef]
- Choudhary, H.K.; Kumar, R.; Anupama, A.V.; Sahoo, B. Effect of annealing temperature on the structural and magnetic properties of Ba-Pb-hexaferrite powders synthesized by sol-gel auto-combustion method. Ceram. Int. 2018, 44, 8877–8889. [Google Scholar] [CrossRef]
- Evans, B.J.; Grandjean, F.; Lilot, A.P.; Vogel, R.H.; Gerard, A. 57Fe hyperfine interactions parameters and selected magnetic properties of high purity MFe12O19 (M = Sr, Ba). J. Magn. Magn. Mater. 1987, 67, 123–129. [Google Scholar] [CrossRef]
- Baykal, A.; Yokuş, S.; Güner, S.; Güngüneş, H.; Sözeri, H.; Amir, M. Magneto-optical properties and Mössbauer Investigation of BaxSryPbzFe12O19 Hexaferrites. Ceram. Int. 2017, 43, 3475–3482. [Google Scholar] [CrossRef]
- Mohammed, J.; Sharma, J.; Yerima, K.U.; Carol, T.T.; Basandrai, D.; Kumar, A.; Maji, P.K.; Srivastava, A.K. Magnetic, Mössbauer and Raman spectroscopy of nanocrystalline Dy3+-Cr3+ substituted barium hexagonal ferrites. Phys. B 2020, 585, 412115. [Google Scholar] [CrossRef]
- Lechevalier, L.; Le Breton, J.M.; Wang, J.F.; Harris, I.R. Structural analysis of hydrothermally synthesized Sr1−xSmxFe12O19. J. Magn. Magn. Mater. 2004, 269, 192–196. [Google Scholar] [CrossRef]
- Karmakar, M.; Mondal, B.; Pal, M.; Mukherjee, K. Acetone and ethanol sensing of barium hexaferrite particles: A case study considering the possibilities of non-conventional hexaferrite sensor. Sens. Actuators B Chem. 2014, 190, 627–633. [Google Scholar] [CrossRef]
- Thirupathy, C.; Lims, S.C.; Sundaram, S.J.; Mahmoud, A.H.; Kaviyarasu, K. Equilibrium synthesis and magnetic properties of BaFe12O19/NiFe2O4 nanocomposite prepared by co precipitation method. J. King Saud Univ. Sci. 2020, 32, 1612–1618. [Google Scholar] [CrossRef]
- Subramanyam, G.; Rao, N.K.; Daivajna, M.D. La3+-Induced Band-Gap Modifications in Barium Hexaferrite: An Investigation of the Structural, Optical, and Dielectric Properties. Eng. Proc. 2023, 55, 94. [Google Scholar] [CrossRef]
- Ohtani, B. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157–178. [Google Scholar] [CrossRef]
- Kisch, H. (Ed.) Semiconductor photocatalysis. In Semiconductor Photocatalysis: Principles and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014. [Google Scholar] [CrossRef]
- Güner, S.; Baykal, A.; Amir, M.; Güngüneş, H.; Geleri, M.; Sözeri, H.; Shirsath, S.E.; Sertkol, M. Synthesis and characterization of oleylamine capped MnxFe1−xFe2O4 nanocomposite: Magneto-optical properties, cation distribution and hyperfine interactions. J. Alloys Comp. 2016, 688 Pt A, 675–686. [Google Scholar] [CrossRef]
- Basha, D.B.; Kumar, N.S.; Naidu, K.C.B.; Kumar, G.R. Structural, electrical, and magnetic properties of nano Sr1−xLaxFe12O19 (x = 0.2–0.8). Sci. Rep. 2022, 12, 12723. [Google Scholar] [CrossRef]
- Sekhar, D.C.; Rao, T.S.; Naidu, K.C.B. Hexagonal microstructure, magnetic and dielectric properties of iron deficient BaNixZnxFe12-xO19 (x = 0.0–0.5) hexaferrites. Appl. Phys. A 2021, 127, 841. [Google Scholar] [CrossRef]
- Saqib, M.; Ali, S.S.; Zulqarnain, M.; Qadri, M.U.; Riaz, M.; Hasan, M.S.; Khan, M.I.; Tahir, M.; Arshad, M.I.; Rani, H.S. Temperature-Dependent Variations in Structural, Magnetic, and Optical Behavior of Doped Ferrites Nanoparticles. J. Supercond. Nov. Magn. 2021, 34, 609–616. [Google Scholar] [CrossRef]
- Baykal, A.; Güner, S.; Demir, A. Synthesis and magneto-optical properties of triethylene glycol stabilized Mn1−xZnxFe2O4 nanoparticles. J. Alloys Comp. 2015, 619, 5–11. [Google Scholar] [CrossRef]
Sample | Ms (emu/g) | Mr (emu/g) | Hc (kOe) |
---|---|---|---|
x = 0.0 | 89.74 | 29.70 | 1.498 |
x = 0.5 | 94.81 | 31.06 | 1.568 |
x = 1.0 | 98.32 | 35.78 | 1.892 |
Sample | Fe Site and Spins Guidelines | Structural Blocks | δ (mm/s) | Δ (mm/s) | B (T) | W (mm/s) | RA (%) | RA* (%) |
---|---|---|---|---|---|---|---|---|
BaFe12O19 | 12k ↑ | R-S | 0.36 (1) | 0.42 (1) | 42.0 (1) | 0.35 (1) | 43.3 (2) | 46 |
4f1 ↓ | S | 0.28 (1) | 0.20 (1) | 49.7 (1) | 0.36 (1) | 21.0 (4) | 22 | |
4f2 ↓ | R | 0.44 (1) | 0.09 (1) | 52.3 (1) | 0.30 (1) | 18.3 (5) | 20 | |
2a ↑ | S | 0.25 (1) | −0.04 (1) | 52.3 (1) | 0.26 (1) | 8.7 (6) | 9 | |
2b ↑ | R | 0.31 (1) | 2.21 (1) | 40.7 (1) | 0.25 (1) | 3.1 (1) | 3 | |
Hematite | 0.39 (2) | −0.20 (1) | 52.1 (1) | 0.30 (1) | 5.6 (1) | |||
Ba0.5Sr0.5Fe12O19 | 12k ↑ | R-S | 0.36 (1) | 0.41 (1) | 42.1 (1) | 0.33 (1) | 44.6 (1) | 46 |
4f1 ↓ | S | 0.28 (1) | 0.17 (1) | 49.9 (1) | 0.35 (1) | 20.2 (3) | 21 | |
4f2 ↓ | R | 0.44 (1) | 0.13 (1) | 52.4 (1) | 0.32 (1) | 19.4 (5) | 20 | |
2a ↑ | S | 0.25 (1) | −0.06 (1) | 52.3 (1) | 0.25 (1) | 8.9 (6) | 9 | |
2b ↑ | R | 0.31 (1) | 2.26 (1) | 40.9 (1) | 0.26 (1) | 3.8 (1) | 4 | |
Hematite | 0.38 (1) | −0.21 (1) | 52.0 (1) | 0.28 (1) | 3.1 (1) | |||
SrFe12O19 | 12k ↑ | R-S | 0.36 (1) | 0.40 (1) | 41.9 (1) | 0.32 (1) | 48.0 (1) | 49 |
4f1 ↓ | S | 0.27 (1) | 0.18 (1) | 49.7 (1) | 0.28 (1) | 17.1 (1) | 18 | |
4f2 ↓ | R | 0.40 (1) | 0.34 (1) | 52.4 (1) | 0.29 (1) | 17.6 (2) | 18 | |
2a ↑ | S | 0.31 (1) | −0.01 (1) | 51.4 (1) | 0.28 (1) | 8.6 (2) | 9 | |
2b ↑ | R | 0.31 (1) | 2.26 (1) | 41.3 (1) | 0.28 (1) | 5.9 (1) | 6 | |
Hematite | 0.39 (1) | −0.20 (1) | 52.1 (1) | 0.29 (1) | 2.8 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, B.F.O.; Benali, A.; Vieira, B.J.C.; Waerenborgh, J.C.; Pina, J.; Marouani, Y.; Dhahri, E. Mössbauer and Optical Investigations on Sr Doped M-Type BaFe12O19 Hexaferrites Produced via Autocombustion. Crystals 2025, 15, 291. https://doi.org/10.3390/cryst15040291
Costa BFO, Benali A, Vieira BJC, Waerenborgh JC, Pina J, Marouani Y, Dhahri E. Mössbauer and Optical Investigations on Sr Doped M-Type BaFe12O19 Hexaferrites Produced via Autocombustion. Crystals. 2025; 15(4):291. https://doi.org/10.3390/cryst15040291
Chicago/Turabian StyleCosta, Benilde F. O., Adel Benali, Bruno J. C. Vieira, João C. Waerenborgh, João Pina, Yousra Marouani, and Essebti Dhahri. 2025. "Mössbauer and Optical Investigations on Sr Doped M-Type BaFe12O19 Hexaferrites Produced via Autocombustion" Crystals 15, no. 4: 291. https://doi.org/10.3390/cryst15040291
APA StyleCosta, B. F. O., Benali, A., Vieira, B. J. C., Waerenborgh, J. C., Pina, J., Marouani, Y., & Dhahri, E. (2025). Mössbauer and Optical Investigations on Sr Doped M-Type BaFe12O19 Hexaferrites Produced via Autocombustion. Crystals, 15(4), 291. https://doi.org/10.3390/cryst15040291