Advancements in the Electrochemical Upcycling of Waste Plastics into High-Value Products
Abstract
:1. Introduction
2. Principles of Electrochemical Plastic Upcycling
2.1. Advantages of Electrochemical Upcycling over Traditional Methods
2.2. Electrochemical Processes for Plastic Upcycling
3. Recent Developments in Electrochemical Plastic Upcycling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dokl, M.; Copot, A.; Krajnc, D.; Van Fan, Y.; Vujanović, A.; Aviso, K.B.; Tan, R.R.; Kravanja, Z.; Čuček, L. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustain. Prod. Consum. 2024, 51, 498–518. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N. The past, present, and future of plastic pollution. Mar. Pollut. Bull. 2022, 176, 113429. [Google Scholar] [CrossRef]
- Singh, N.; Walker, T.R. Plastic recycling: A panacea or environmental pollution problem. npj Mater. Sustain. 2024, 2, 17. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, B.; Xiong, L.; Liu, W.; Wang, D.; Ma, W.; Jiang, L.; Yang, J.; Wang, P.; Xiao, T.; et al. Highly selective upcycling of plastic mixture waste by microwave-assisted catalysis over Zn/b-ZnO. Nat. Commun. 2025, 16, 1726. [Google Scholar] [CrossRef]
- Lusher, A.L.; Welden, N.A.; Sobral, P.; Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 2017, 9, 1346–1360. [Google Scholar] [CrossRef]
- Geyer, R. Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling. Environmental Impact, Societal Issues, Prevention, and Solutions; Letcher, T.M., Ed.; Academic Press: London, UK, 2020; pp. 13–32. [Google Scholar] [CrossRef]
- Dhaka, V.; Singh, S.; Anil, A.G.; Naik, T.S.S.K.; Garg, S.; Samuel, J.; Kumar, M.; Ramamurthy, P.C.; Singh, J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ. Chem. Lett. 2022, 20, 1777–1800. [Google Scholar] [CrossRef]
- Kamali, A.R.; Li, S. Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance. Appl. Energy 2023, 334, 120692. [Google Scholar] [CrossRef]
- Chan, K.; Zinchenko, A. Aminolysis-assisted hydrothermal conversion of waste PET plastic to N-doped carbon dots with markedly enhanced fluorescence. J. Environ. Chem. Eng. 2022, 10, 107749. [Google Scholar] [CrossRef]
- Soong, Y.-H.V.; Sobkowicz, M.J.; Xie, D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering 2022, 9, 98. [Google Scholar] [CrossRef]
- Cho, J.; Kim, B.; Kwon, T.; Lee, K.; Choi, S.-I. Electrocatalytic upcycling of plastic waste. Green Chem. 2023, 25, 8444–8458. [Google Scholar] [CrossRef]
- Babaei, M.; Jalilian, M.; Shahbaz, K. Chemical recycling of Polyethylene terephthalate: A mini-review. J. Environ. Chem. Eng. 2024, 12, 112507. [Google Scholar] [CrossRef]
- Sarda, P.; Hanan, J.C.; Lawrence, J.G.; Allahkarami, M. Sustainability performance of polyethylene terephthalate, clarifying challenges and opportunities. J. Polym. Sci. 2022, 60, 7–31. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Guo, X.; Chen, Y.; Sun, W.; Peng, C. Electrocatalytic reforming of polyethylene terephthalate waste plastics into high-value-added chemicals with green hydrogen generation. J. Colloid Interface Sci. 2025, 685, 29–37. [Google Scholar] [CrossRef]
- Haq, F.; Kiran, M.; Khan, I.A.; Mehmood, S.; Aziz, T.; Haroon, M. Exploring the pathways to sustainability: A comprehensive review of biodegradable plastics in the circular economy. Mater. Today Sustain. 2025, 29, 101067. [Google Scholar] [CrossRef]
- Vaksmaa, A.; Hernando-Morales, V.; Zeghal, E.; Niemann, H. Microbial Degradation of Marine Plastics: Current State and Future Prospects. In Biotechnology for Sustainable Environment; Springer: Singapore, 2021; pp. 111–154. [Google Scholar] [CrossRef]
- Oh, S.; Stache, E.E. Chemical Upcycling of Commercial Polystyrene via Catalyst-Controlled Photooxidation. J. Am. Chem. Soc. 2022, 144, 5745–5749. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, H.; Zhao, K.; Wang, S.; Zhang, D.; Li, Y.; Fan, R.; Li, J.; Chen, X.; Zhou, X.; et al. Catalytic oxidation upcycling of polyethylene terephthalate to commodity carboxylic acids. Nat. Commun. 2024, 15, 10732. [Google Scholar] [CrossRef]
- Oliveira, J.; Belchior, A.; da Silva, V.D.; Rotter, A.; Petrovski, Ž.; Almeida, P.L.; Lourenço, N.D.; Gaudêncio, S.P. Marine Environmental Plastic Pollution: Mitigation by Microorganism Degradation and Recycling Valorization. Front. Mar. Sci. 2020, 7, 567126. [Google Scholar] [CrossRef]
- Watt, E.; Picard, M.; Maldonado, B.; Abdelwahab, M.A.; Mielewski, D.F.; Drzal, L.T.; Misra, M.; Mohanty, A.K. Ocean plastics: Environmental implications and potential routes for mitigation—A perspective. RSC Adv. 2021, 11, 21447–21462. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, X.; Xi, W.; Zhou, H.; Yang, P.; Yao, J.; Jiang, X.; Wu, D. Upcycling plastic waste to carbon materials for electrochemical energy storage and conversion. Chem. Eng. J. 2023, 461, 141962. [Google Scholar] [CrossRef]
- Wang, X.-H.; Zhang, Z.-N.; Wang, Z.; Ding, Y.; Zhai, Q.-G.; Jiang, Y.-C.; Li, S.-N.; Chen, Y. Ultra-thin CoNi0.2P nanosheets for plastics and biomass participated hybrid water electrolysis. Chem. Eng. J. 2023, 465, 142938. [Google Scholar] [CrossRef]
- Masoumi, Z.; Tayebi, M.; Tayebi, M.; Lari, S.A.M.; Sewwandi, N.; Seo, B.; Lim, C.-S.; Kim, H.-G.; Kyung, D. Electrocatalytic Reactions for Converting CO2 to Value-Added Products: Recent Progress and Emerging Trends. Int. J. Mol. Sci. 2023, 24, 9952. [Google Scholar] [CrossRef] [PubMed]
- Plastic upcycling. Nat. Catal. 2019, 2, 945–946. [CrossRef]
- Adame-Solorio, J.; Kimmel, S.W.; Bailey, K.O.; Rhodes, C.P. Chromium Substitution Within Ruthenium Oxide Aerogels Enables High Activity Oxygen Evolution Electrocatalysts for Water Splitting. Crystals 2025, 15, 116. [Google Scholar] [CrossRef]
- Ahmad, K.; Oh, T.H. Progress in Boron Nitride-Based Materials as Catalysts for Energy Storage and Electrochemical Application. Crystals 2025, 15, 27. [Google Scholar] [CrossRef]
- Morankar, P.J.; Amate, R.U.; Yewale, M.A.; Jeon, C.-W. Effect of Annealing Temperature on Morphology and Electrochromic Performance of Electrodeposited WO3 Thin Films. Crystals 2024, 14, 1038. [Google Scholar] [CrossRef]
- Tayebi, M.; Masoumi, Z.; Seo, B.; Lim, C.-S.; Hong, C.H.; Kim, H.J.; Kyung, D.; Kim, H.-G. Production of H2 and Glucaric Acid Using Electrocatalyst Glucose Oxidation by the Ta NiFe LDH Electrode. ACS Appl. Mater. Interfaces 2024, 16, 26107–26120. [Google Scholar] [CrossRef]
- Tayebi, M.; Masoumi, Z.; Lee, H.; Hong, D.; Seo, B.; Lim, C.; Kyung, D.; Kim, H. MOF-Derived FeCoO/N-Doped C Bifunctional Electrode for H2 Production Through Water and Glucose Electrolysis. Adv. Sustain. Syst. 2024, 8, 2400342. [Google Scholar] [CrossRef]
- Chang, J.; Song, F.; Hou, Y.; Wu, D.; Xu, F.; Jiang, K.; Gao, Z. Molybdenum, tungsten doped cobalt phosphides as efficient catalysts for coproduction of hydrogen and formate by glycerol electrolysis. J. Colloid Interface Sci. 2024, 665, 152–162. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Li, F.-M.; Dang, Z.; Gao, P. Ultrathin NiSe Nanosheets on Ni Foam for Efficient and Durable Hydrazine-Assisted Electrolytic Hydrogen Production. ACS Appl. Mater. Interfaces 2021, 13, 34457–34467. [Google Scholar] [CrossRef]
- Liu, S.; Shang, S.; Zhang, L.; Cao, B.; Meng, L.; Ding, Y.; Wu, H. Co2P@MoO3/NF composite as dual-functional electrocatalyst for energy-saving hydrogen production and urea oxidation. Fuel 2024, 373, 132362. [Google Scholar] [CrossRef]
- Zhou, H.; Ren, Y.; Li, Z.; Xu, M.; Wang, Y.; Ge, R.; Kong, X.; Zheng, L.; Duan, H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kong, D.; Zheng, X.; Park, J.H. Upcycling plastic wastes into value-added products via electrocatalysis and photoelectrocatalysis. J. Energy Chem. 2024, 91, 522–541. [Google Scholar] [CrossRef]
- Ma, F.; Wang, S.; Gong, X.; Liu, X.; Wang, Z.; Wang, P.; Liu, Y.; Cheng, H.; Dai, Y.; Zheng, Z.; et al. Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 janus nanostructures. Appl. Catal. B Environ. Energy 2022, 307, 121198. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, J.; Baumann, D.; Peng, L.; Xu, Y.; Shakir, I.; Huang, Y.; Duan, X. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 2018, 4, 45–60. [Google Scholar] [CrossRef]
- Ge, K.; Shao, H.; Lin, Z.; Taberna, P.-L.; Simon, P. Advanced characterization of confined electrochemical interfaces in electrochemical capacitors. Nat. Nanotechnol. 2024, 20, 196–208. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Tang, J.; Hu, Z.; Zhang, Y.; Ge, H.; Jian, N.; Zhao, J.; Cabot, A.; Li, J. Electrochemical PET recycling to formate through ethylene glycol oxidation on Ni–Co–S nanosheet arrays. J. Mater. Chem. A Mater. 2024, 12, 33917–33925. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Wang, L.; Kuang, M.; Wang, S.; Yang, J. Toward carbon neutrality: Selective conversion of waste plastics into value-added chemicals. Matter 2023, 6, 3322–3347. [Google Scholar] [CrossRef]
- Petersen, H.A.; Myren, T.H.T.; O’sullivan, S.J.; Luca, O.R. Electrochemical methods for materials recycling. Mater. Adv. 2021, 2, 1113–1138. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Zhang, L.; Matos, J.; Wang, L.; Yang, J. Electrocatalytic upcycling of plastic waste: Progress, challenges, and future. Electron 2024, 2, e63. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Li, X.; Deng, K.; Yu, H.; Xu, Y.; Wang, H.; Wang, Z.; Wang, L. Electrocatalytic upcycling of polyethylene terephthalate plastic to formic acid coupled with energy-saving hydrogen production over hierarchical Pd-doped NiTe nanoarrays. Appl. Catal. B Environ. 2024, 340, 123236. [Google Scholar] [CrossRef]
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, e2000415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zeng, M.; Yappert, R.D.; Sun, J.; Lee, Y.-H.; LaPointe, A.M.; Peters, B.; Abu-Omar, M.M.; Scott, S.L. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 1979 2020, 370, 437–441. [Google Scholar] [CrossRef]
- Abdelfatah, A.M.; Hosny, M.; Elbay, A.S.; El-Maghrabi, N.; Fawzy, M. From Waste to Worth: Upcycling Plastic into High-Value Carbon-Based Nanomaterials. Polymers 2025, 17, 63. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Park, H.; Ackermann, Y.S.; Avérous, L.; Ballerstedt, H.; Besenmatter, W.; Blázquez, B.; Bornscheuer, U.T.; Branson, Y.; Casey, W.; et al. Exploring biotechnology for plastic recycling, degradation and upcycling for a sustainable future. Biotechnol. Adv. 2025, 81, 108544. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, H.; Xu, S.-M.; Yang, J.; Hao, P.; Cai, X.; Ren, Y.; Xu, M.; Kong, X.; Shao, M.; et al. Electrocatalytic Upcycling of Biomass and Plastic Wastes to Biodegradable Polymer Monomers and Hydrogen Fuel at High Current Densities. J. Am. Chem. Soc. 2023, 145, 6144–6155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Lin, J.; Lu, M.; Li, L.; Xu, P.; Liu, X.; Chen, L. Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals. Nat. Commun. 2024, 15, 8463. [Google Scholar] [CrossRef]
- Siracusa, C.; Celestre, V.; Quartinello, F.; Damonte, G.; Madsen, J.; Guebitz, G.M.; Daugaard, A.E.; Pellis, A. There and Back Again: Recovery of Terephthalic Acid from Enzymatically Hydrolyzed Polyesters for Resynthesis. ACS Sustain. Resour. Manag. 2025, 2, 334–342. [Google Scholar] [CrossRef]
- Myren, T.H.T.; Stinson, T.A.; Mast, Z.J.; Huntzinger, C.G.; Luca, O.R. Chemical and Electrochemical Recycling of End-Use Poly(ethylene terephthalate) (PET) Plastics in Batch, Microwave and Electrochemical Reactors. Molecules 2020, 25, 2742. [Google Scholar] [CrossRef]
- Kim, Y.; Jeevika, A.; Suwa, T.; Kubo, K.; Iimura, K.-I. Asymmetric Imidazolium-Based Ionic Liquid Crystal with Enhanced Ionic Conductivity in Low-Temperature Smectic Phases. Crystals 2024, 14, 1053. [Google Scholar] [CrossRef]
- Murray, J.S.; Riley, K.E.; Brinck, T. A Revival of Molecular Surface Electrostatic Potential Statistical Quantities: Ionic Solids and Liquids. Crystals 2024, 14, 995. [Google Scholar] [CrossRef]
- Mao, Y.; Fan, S.; Li, X.; Shi, J.; Wang, M.; Niu, Z.; Chen, G. Trash to treasure: Electrocatalytic upcycling of polyethylene terephthalate (PET) microplastic to value-added products by Mn0.1Ni0.9Co2O4-δ RSFs spinel. J. Hazard. Mater. 2023, 457, 131743. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.H.; Barlow, S.; Marder, S.R.; Luca, O.R. Electricity-driven recycling of ester plastics using one-electron electro-organocatalysis. Chem Catal. 2023, 3, 100675. [Google Scholar] [CrossRef]
- Henke, A.H.; Saunders, T.P.; Pedersen, J.A.; Hamers, R.J. Enhancing Electrochemical Efficiency of Hydroxyl Radical Formation on Diamond Electrodes by Functionalization with Hydrophobic Monolayers. Langmuir 2019, 35, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Kothandam, G.; Singh, G.; Guan, X.; Lee, J.M.; Ramadass, K.; Joseph, S.; Benzigar, M.; Karakoti, A.; Yi, J.; Kumar, P.; et al. Recent Advances in Carbon-Based Electrodes for Energy Storage and Conversion. Adv. Sci. 2023, 10, 2301045. [Google Scholar] [CrossRef]
- Miao, F.; Liu, Y.; Gao, M.; Yu, X.; Xiao, P.; Wang, M.; Wang, S.; Wang, X. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. J. Hazard. Mater. 2020, 399, 123023. [Google Scholar] [CrossRef]
- Pichler, C.M.; Bhattacharjee, S.; Rahaman, M.; Uekert, T.; Reisner, E. Conversion of Polyethylene Waste into Gaseous Hydrocarbons via Integrated Tandem Chemical–Photo/Electrocatalytic Processes. ACS Catal. 2021, 11, 9159–9167. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Wang, M.; Zhang, T.; Chai, X.; Lu, J.; Wang, T.; Zhao, Y.; Ma, D. Electrocatalytic Valorization of poly(ethylene terephthalate) Plastic and CO2 for Simultaneous Production of Formic Acid. ACS Catal. 2022, 12, 6722–6728. [Google Scholar] [CrossRef]
- Tu, Z.; He, X.; Liu, X.; Xiong, D.; Xue, S.; Wu, D.; Wang, J.; Chen, Z. Upcycling Polyethylene Terephthalate Plastic to C2 Chemicals in Parallel with Nitrate Reduction to Ammonia or Electric Energy Generation. Chem. Mater. 2025, 37, 1195–1204. [Google Scholar] [CrossRef]
- Du, M.; Xue, R.; Yuan, W.; Cheng, Y.; Cui, Z.; Dong, W.; Qiu, B. Tandem Integration of Biological and Electrochemical Catalysis for Efficient Polyester Upcycling under Ambient Conditions. Nano Lett. 2024, 24, 9768–9775. [Google Scholar] [CrossRef]
- Xiang, D.; Zhou, K.; Huang, J.; Kang, Q.; Li, H.; Duan, Y.; Du, J.; Liu, H. Electrochemical Upgrading of Waste Polylactic Acid Plastic for the Coproduction of C2 Chemicals and Green Hydrogen. Molecules 2024, 29, 5323. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Wang, J.; Miao, Y.; Wang, T.; Qian, X.; Zhao, Y. Photovoltaic-driven electrocatalytic upcycling poly(ethylene terephthalate) plastic waste coupled with hydrogen generation. J. Hazard. Mater. 2023, 450, 131054. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, L.; Wang, X.-H.; Chen, C.; Li, M.; Wang, J.-Y.; Li, S.-N. Electrochemical upgrading of PET plastic wastes for hydrogen production using porous Fe–Ni2P nanosheets. Int. J. Hydrogen Energy 2024, 96, 794–802. [Google Scholar] [CrossRef]
- Ren, T.; Yu, Z.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Wang, H.; Wang, L.; Xu, Y. Sustainable Ammonia Electrosynthesis from Nitrate Wastewater Coupled to Electrocatalytic Upcycling of Polyethylene Terephthalate Plastic Waste. ACS Nano 2023, 17, 12422–12432. [Google Scholar] [CrossRef]
- Shi, R.; Liu, K.-S.; Liu, F.; Yang, X.; Hou, C.-C.; Chen, Y. Electrocatalytic reforming of waste plastics into high value-added chemicals and hydrogen fuel. Chem. Commun. 2021, 57, 12595–12598. [Google Scholar] [CrossRef] [PubMed]
- Si, D.; Xiong, B.; Chen, L.; Shi, J. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catal. 2021, 1, 941–955. [Google Scholar] [CrossRef]
- Li, Y.; Lee, L.Q.; Yu, Z.G.; Zhao, H.; Zhang, Y.-W.; Gao, P.; Li, H. Coupling of PET waste electroreforming with green hydrogen generation using bifunctional catalyst. Sustain. Energy Fuels 2022, 6, 4916–4924. [Google Scholar] [CrossRef]
- Wang, N.; Li, X.; Hu, M.-K.; Wei, W.; Zhou, S.-H.; Wu, X.-T.; Zhu, Q.-L. Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl. Catal. B Environ. 2022, 316, 121667. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Zhao, H.; Wang, Z.; Li, H.; Gao, P. A bifunctional catalyst of ultrathin cobalt selenide nanosheets for plastic-electroreforming-assisted green hydrogen generation. J. Mater. Chem. A Mater. 2022, 10, 20446–20452. [Google Scholar] [CrossRef]
- Liu, F.; Gao, X.; Shi, R.; Guo, Z.; Tse, E.C.M.; Chen, Y. Concerted and Selective Electrooxidation of Polyethylene-Terephthalate-Derived Alcohol to Glycolic Acid at an Industry-Level Current Density over a Pd–Ni(OH)2 Catalyst. Angew. Chem. 2023, 135, e202300094. [Google Scholar] [CrossRef]
- Du, M.; Zhang, Y.; Kang, S.; Xu, C.; Ma, Y.; Cai, L.; Zhu, Y.; Chai, Y.; Qiu, B. Electrochemical Production of Glycolate Fuelled by Polyethylene Terephthalate Plastics with Improved Techno-Economics. Small 2023, 19, 2303693. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, F.; Kuang, M.; Wang, L.; Wang, H.; Li, W.; Yang, J. Unveiling synergy of strain and ligand effects in metallic aerogel for electrocatalytic polyethylene terephthalate upcycling. Proc. Natl. Acad. Sci. USA 2024, 121, e2318853121. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Wang, L.; Wu, D.; Xu, F.; Jiang, K.; Guo, Y.; Gao, Z. Concurrent electrocatalytic hydrogen evolution and polyethylene terephthalate plastics reforming by self-supported amorphous cobalt iron phosphide electrode. J. Colloid Interface Sci. 2024, 655, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Lian, Z.; Wang, W.; Yu, J.; Yu, H.; Wang, Z.; Xu, Y.; Wang, L.; Wang, H. Lattice Strain and Charge Redistribution of Pt Cluster/Ir Metallene Heterostructure for Ethylene Glycol to Glycolic Acid Conversion Coupled with Hydrogen Production. Small 2024, 20, 2305000. [Google Scholar] [CrossRef]
- Liu, X.; He, X.; Xiong, D.; Wang, G.; Tu, Z.; Wu, D.; Wang, J.; Gu, J.; Chen, Z. Electro-Reforming of PET Plastic to C2 Chemicals with Concurrent Generation of Hydrogen and Electric Energy. ACS Catal. 2024, 14, 5366–5376. [Google Scholar] [CrossRef]
Method | Advantages | Limitations | Scale of Treated Plastics | Reference |
---|---|---|---|---|
Mechanical | - Avoiding hazardous chemicals - Minimizing energy use - Able to handle high volumes | - Shortened fiber length reduces material strength - Potential equipment damage from fibers | Large-scale | [43] |
Chemical | - Creates long, strong fibers - Keeps its strength - Recovers a lot of matrix materials | - Requires expensive equipment - Potential use of hazardous solvents | Large-scale | [44] |
Thermal | - Maintains fiber length - No hazardous chemicals are used - Can be used for energy production | - Fiber properties highly influenced by process parameters - Some processes do not recover matrix material | Large-scale | [45] |
Biological | - Environmentally friendly - Potential for complete degradation of certain plastics | - Limited to specific types of plastics - Currently under development and not widely implemented | Laboratory scale | [46] |
Electrochemical | - Converts plastic waste into valuable chemicals and fuels - Potential for high selectivity and efficiency | - Technology is still emerging - Requires further research to optimize processes and scalability | Laboratory to pilot scale | [41] |
Catalyst | FE | Product | Year | Reference |
---|---|---|---|---|
Pd/NF | 93% | Carbonate | 2021 | [66] |
PdAg/NF | 92% | Glycolic acid | 2021 | [67] |
CoNi0.25P/NF | >80% | Formate | 2021 | [33] |
Co0.6-Ni2P/NF | 85% | Formate | 2022 | [68] |
NiCo2O4/CFP | 90% | Formate | 2022 | [59] |
OMS-Ni1-CoP | 96% | Formate | 2022 | [69] |
CoSe2/NF | 96% | Acetic acid | 2022 | [70] |
Ni3N/W5N4 | 97% | Formate | 2022 | [35] |
Pd-Ni(OH)2 | >85% | Glycolic acid | 2023 | [71] |
(Pt/γ-NiOOH/NF) | >90% | Glycolate | 2023 | [72] |
CuO NWs | 67% | Formate | 2023 | [63] |
Au/Ni(OH)2 | 91% | Glycolic acid | 2023 | [47] |
PdAg alloy | 93% | Glycolic acid | 2024 | [73] |
CoFe-P/NF | 90% | Formate | 2024 | [74] |
Pt/Ir hetero-metallene | 87% | Glycolic acid | 2024 | [75] |
Pt–Ni(OH)2/NF | 93% | Glycolic acid | 2024 | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Masoumilari, S.; Park, Y.; Lee, S.; Kyung, D.; Masoumi, Z. Advancements in the Electrochemical Upcycling of Waste Plastics into High-Value Products. Crystals 2025, 15, 293. https://doi.org/10.3390/cryst15040293
Kim J, Masoumilari S, Park Y, Lee S, Kyung D, Masoumi Z. Advancements in the Electrochemical Upcycling of Waste Plastics into High-Value Products. Crystals. 2025; 15(4):293. https://doi.org/10.3390/cryst15040293
Chicago/Turabian StyleKim, Jinwoo, Shokouh Masoumilari, Yeojin Park, Simin Lee, Daeseung Kyung, and Zohreh Masoumi. 2025. "Advancements in the Electrochemical Upcycling of Waste Plastics into High-Value Products" Crystals 15, no. 4: 293. https://doi.org/10.3390/cryst15040293
APA StyleKim, J., Masoumilari, S., Park, Y., Lee, S., Kyung, D., & Masoumi, Z. (2025). Advancements in the Electrochemical Upcycling of Waste Plastics into High-Value Products. Crystals, 15(4), 293. https://doi.org/10.3390/cryst15040293