Four Polymorphs of the Bioactive Diuretic Drug 4-Chloro-5-chlorosulfonyl Salicylic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single Crystal Growth Experiments
- (i)
- Polymorph 1 was obtained from a methanol solution;
- (ii)
- Polymorph 2 was crystallized in acetonitrile;
- (iii)
- Polymorph 3 was obtained from a 1:1 mixture of ethanol and acetone;
- (iv)
- Polymorph 4 was obtained from a tetrahydrofuran solution.
2.2. X-Ray Single Crystal Diffraction and Structure Refinement
2.3. X-Ray Powder Diffraction Analysis
2.4. Computational Chemistry
3. Results
3.1. Descriptions of the Crystal Structures
3.1.1. Polymorph 1
3.1.2. Polymorph 2
3.1.3. Polymorph 3
3.1.4. Polymorph 4
- (i)
- All polymorphs crystallized in centrosymmetric space groups: monoclinic C2/c for polymorph 1, triclinic P-1 for polymorph 2, and monoclinic P21/c for polymorphs 3 and 4.
- (ii)
- The polymorphs are characterized by asymmetric units consisting of single diuretic molecules.
- (iii)
- All four polymorphs exhibit molecular dimers based on the formation of R22(8) homosynthons via strong O-H···O mutual hydrogen bonds.
- (iv)
- In terms of molecular layout, polymorph 1 differs from polymorphs 2, 3, and 4 due to the twisted chlorosulfonyl group.
3.2. Powder X-Ray Diffraction
3.3. Hirshfeld Surface Analysis
3.4. Intermolecular Interaction Energies
3.5. Crystal Lattice Energies in Polymorphs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- War, A.R.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Role of Salicylic Acid in Induction of Plant Defense System in Chickpea (Cicer arietinum L.). Plant Signal. Behav. 2011, 6, 1787–1792. [Google Scholar] [CrossRef]
- Madan, R.K.; Levitt, J. A Review of Toxicity from Topical Salicylic Acid Preparations. J. Am. Acad. Dermatol. 2014, 70, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Bilal, H.; Xiao, Y.; Khan, M.N.; Chen, J.; Wang, Q.; Zeng, Y.; Lin, X. Stabilization of Acne Vulgaris-Associated Microbial Dysbiosis with 2% Supramolecular Salicylic Acid. Pharmaceuticals 2023, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Andrýsková, N.; Motyčka, J.; Babincová, M.; Babinec, P.; Šimaljaková, M. Computational Design of a Novel Dithranol–Salicylic Acid Antipsoriatic Prodrug for Esterase-Activated Topical Drug Delivery. Appl. Sci. 2024, 14, 1094. [Google Scholar] [CrossRef]
- Măgerușan, Ș.E.; Hancu, G.; Rusu, A. A Comprehensive Bibliographic Review Concerning the Efficacy of Organic Acids for Chemical Peels Treating Acne Vulgaris. Molecules 2023, 28, 7219. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.H. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. Int. J. Mol. Sci. 2024, 25, 5302. [Google Scholar] [CrossRef]
- Song, X.; Li, R.; Zhang, Q.; He, S.; Wang, Y. Antibacterial Effect and Possible Mechanism of Salicylic Acid Microcapsules against Escherichia Coli and Staphylococcus Aureus. Int. J. Environ. Res. Public Health 2022, 19, 12761. [Google Scholar] [CrossRef]
- Lebedev, A.A.; Bazhmina, M.Y.; Smirnov, V.A. Synthesis and Diuretic Activity of 4-Chlorosalicylic Acid Derivatives. Pharm. Chem. J. 1987, 21, 641–645. [Google Scholar] [CrossRef]
- Smith, R.L.; Woltersdorf, O.W.; Cragoe, E.J. Chapter 8: Diuretics. In Annual Reports in Medicinal Chemistry; Elsevier: Amsterdam, The Netherlands, 1976; Volume 11, pp. 71–79. ISBN 978-0-12-040511-4. [Google Scholar]
- Braun, D.E.; Karamertzanis, P.G.; Arlin, J.-B.; Florence, A.J.; Kahlenberg, V.; Tocher, D.A.; Griesser, U.J.; Price, S.L. Solid-State Forms of β-Resorcylic Acid: How Exhaustive Should a Polymorph Screen Be? Cryst. Growth Des. 2011, 11, 210–220. [Google Scholar] [CrossRef]
- Sarma, B.; Sanphui, P.; Nangia, A. Polymorphism in Isomeric Dihydroxybenzoic Acids. Cryst. Growth Des. 2010, 10, 2388–2399. [Google Scholar] [CrossRef]
- Turza, A.; Borodi, G.; Miclaus, M.O.; Kacso, I. Structural Studies of the Diuretic Compound 4-Chloro Salicylic Acid-5-Sulfonamide. J. Mol. Struct. 2020, 1212, 128154. [Google Scholar] [CrossRef]
- Montis, R.; Hursthouse, M.B. Surprisingly Complex Supramolecular Behaviour in the Crystal Structures of a Family of Mono-Substituted Salicylic Acids. CrystEngComm 2012, 14, 5242. [Google Scholar] [CrossRef]
- Alexandru, T.; Maria, M.O.; Liviu, Z.; Maria, D.; Irina, K.; Gheorghe, B. New Solid Forms of the Diuretic Compound 4-Chloro Salicylic Acid-5-Sulfonamide. J. Mol. Struct. 2021, 1241, 130682. [Google Scholar] [CrossRef]
- Bernstein, J. Polymorphism in Molecular Crystals, 2nd ed.; IUCr Monographs on Crystallography; Oxford University Press: Oxford, UK; New York, NY, USA, 2020; ISBN 978-0-19-965544-1. [Google Scholar]
- Artusio, F.; Contreras-Montoya, R.; Gavira, J.A. Advances in Pharmaceutical Crystals: Control over Nucleation and Polymorphism. Crystals 2024, 14, 805. [Google Scholar] [CrossRef]
- Chistyakov, D.; Sergeev, G. The Polymorphism of Drugs: New Approaches to the Synthesis of Nanostructured Polymorphs. Pharmaceutics 2020, 12, 34. [Google Scholar] [CrossRef]
- Tan, S.L.; Tan, Y.S.; Ng, J.H.; Dolzhenko, A.V.; Tiekink, E.R.T. Two Conformational polymorphs of a Bioactive Pyrazolol [3,4-d]pyrimidine. Crystals 2023, 13, 974. [Google Scholar] [CrossRef]
- Shi, P.; Han, Y.; Zhu, Z. Research progress on the Molecular Mechanism of Polymorph Nucleation in Solution: A Perspective from Research Mentality and Technique. Crystals 2023, 13, 1206. [Google Scholar] [CrossRef]
- Filho, A.S.; Martins, J.L.R.; Costa, R.F.; Pedrino, G.R.; Duarte, V.S.; Silva, O.N.; Napolitano, H.B.; Fajemiroye, J.O. Polymorphism and Pharmacological Assessment of Carmazepine. Int. J. Mol. Sci. 2024, 25, 9835. [Google Scholar] [CrossRef]
- Tan, S.L.; Tan, Y.S.; Shahari, M.S.; Junaid, A.; Dolzhenko, A.V.; Tiekink, E.R.T. Ethanol- and heat-mediated phase change from a kinetic (Z′ = 1) polymorph for N2,6-diaryl-1,3,5-triazine-2,4-diamine. CrystEngComm 2023, 25, 798–812. [Google Scholar] [CrossRef]
- CrysAlis PRO; Rigaku Oxford Diffraction: Yarnton, UK, 2015.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef]
- Hahn, T. International Tables for Crystallography, 5th ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; ISBN 978-0-7923-6590-7. [Google Scholar]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Chisholm, J.A.; Motherwell, S. COMPACK: A Program for Identifying Crystal Structure Similarity Using Distances. J. Appl. Crystallogr. 2005, 38, 228–231. [Google Scholar] [CrossRef]
- Spek, A.L. checkCIF validation ALERTS: What they mean and how to respond. Acta Crystallogr. Sect. E Crystallogr. Commun. 2020, 76, 1–11. [Google Scholar] [CrossRef] [PubMed]
Identification Code | Polymorph 1 | Polymorph 2 | Polymorph 3 | Polymorph 4 |
Empirical formula | C7H4Cl2O5S | C7H4Cl2O5S | C7H4Cl2O5S | C7H4Cl2O5S |
Formula weight | 271.06 | 271.06 | 271.06 | 271.06 |
Temperature/K | 293(2) | 293(2) | 293(2) | 293(2) |
Crystal system | monoclinic | triclinic | monoclinic | monoclinic |
Space group | C2/c | P-1 | P21/c | P21/c |
a/Å | 16.1353(7) | 7.6935(7) | 7.4495(3) | 5.9570(2) |
b/Å | 7.3277(3) | 8.1150(7) | 8.5652(2) | 9.6985(3) |
c/Å | 17.1273(7) | 8.7459(9) | 15.4974(5) | 16.8231(5) |
α/° | 90 | 81.717(8) | 90 | 90 |
β/° | 95.571(4) | 68.786(9) | 97.386(3) | 95.364(3) |
γ/° | 90 | 79.410(8) | 90 | 90 |
Volume/Å3 | 2015.48(15) | 498.57(9) | 980.63(6) | 967.68(5) |
Z′ | 1 | 1 | 1 | 1 |
Z | 8 | 2 | 4 | 4 |
ρcalcg/cm3 | 1.787 | 1.806 | 1.836 | 1.861 |
μ/mm−1 | 7.781 | 0.856 | 0.870 | 8.103 |
F(000) | 1088.0 | 272.0 | 544.0 | 544.0 |
Radiation | CuKα (λ = 1.54184) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | Cu Kα (λ = 1.54184) |
2θ range for data collection/° | 10.378 to 142.836 | 6.862 to 58.076 | 7.124 to 58.136 | 10.54 to 142.178 |
Index ranges | −15 ≤ h ≤ 19, −8 ≤ k ≤ 4, −18 ≤ l ≤ 20 | −9 ≤ h ≤ 9, −11 ≤ k ≤ 9, −11 ≤ l ≤ 10 | −9 ≤ h ≤ 9, −11 ≤ k ≤ 11, −20 ≤ l ≤ 20 | −7 ≤ h ≤ 7, −11 ≤ k ≤ 11, −20 ≤ l ≤ 12 |
Reflections collected | 3114 | 3305 | 13001 | 3406 |
Independent reflections | 1909 [Rint = 0.0140, Rsigma = 0.0230] | 2147 [Rint = 0.0372, Rsigma = 0.0643] | 2384 [Rint = 0.0458, Rsigma = 0.0372] | 1829 [Rint = 0.0206, Rsigma = 0.0301] |
Data/restraints/parameters | 1909/0/138 | 2147/4/144 | 2384/2/144 | 1829/0/139 |
Goodness-of-fit on F2 | 1.050 | 1.072 | 1.078 | 1.049 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0344, wR2 = 0.0886 | R1 = 0.0565, wR2 = 0.1320 | R1 = 0.0628, wR2 = 0.1714 | R1 = 0.0359, wR2 = 0.0970 |
Final R indexes [all data] | R1 = 0.0384, wR2 = 0.0926 | R1 = 0.0783, wR2 = 0.1656 | R1 = 0.0967, wR2 = 0.1967 | R1 = 0.0406, wR2 = 0.1032 |
Largest diff. peak/hole/e Å−3 | 0.32/−0.48 | 0.42/−0.62 | 0.72/−0.67 | 0.35/−0.33 |
Contact | dnorm Distance (Å) | ∑vdW (Å) | Δ(∑vdW-dnorm Distance) | Symmetry Operation |
---|---|---|---|---|
Polymorph 1 | ||||
O1-H1···O2 | 1.666 | 2.72 | 0.944 | ½ − x, ½ − y, −z |
O3-H3···O5 | 2.490 | 2.72 | 0.12 | x, 1 − y, −½ + z |
C4-H4···O4 | 2.445 | 2.72 | 0.165 | x, 1 + y, z |
O4···C1 | 2.904 | 3.22 | 0.316 | ½ − x, ½ + y, ½ − z |
O4···C2 | 3.129 | 3.22 | 0.091 | ½ − x, ½ + y, ½ − z |
C1···Cl2 | 3.409 | 3.45 | 0.041 | 1 − x, y, ½ − y |
Polymorph 2 | ||||
O1-H1···O2 | 1.705 | 2.72 | 0.905 | 1 − x, 1 − y, -1 − z |
O3-H3···O5 | 2.387 | 2.72 | 0.223 | 1 + x, y, −1 + z |
C4-H4···O4 | 2.308 | 2.72 | 0.302 | 1 + x, y, z |
Cl2···O3 | 3.249 | 3.27 | 0.021 | 1 − x, 2 − y, −z |
Polymorph 3 | ||||
O1-H1···O2 | 1.718 | 2.72 | 0.892 | −x, −y, −z |
C4-C4 (π-π) | 3.393 | 3.40 | 0.007 | 1 − x, 1 − y, −z |
C7-H7···Cl2 | 2.949 | 2.95 | 0.109 | −x, −½ + y, ½ − z |
C7···O5 | 3.213 | 3.22 | 0.007 | 1 − x, −½ + y, ½ − z |
Polymorph 4 | ||||
O1-H1···O2 | 1.698 | 2.72 | 0.912 | −x, 2 − y, 1 − z |
O3-H3···O5 | 2.606 | 2.72 | 0.004 | x, 1.5 − y, ½ + z |
C7-H7···Cl2 | 2.925 | 2.95 | 0.025 | −x, ½ + y, ½ − z |
Cl1···Cl2 | 3.425 | 3.50 | 0.075 | 1 + x, y, z |
O3···Cl2 | 3.258 | 3.27 | 0.012 | 1 − x, 1 − y, 1 − z |
Crystal | Contact | Eele | Epol | Edisp | Erep | Etot |
---|---|---|---|---|---|---|
Polymorph 1 | O1-H1···O2 | −115.0 | −19.9 | −11.5 | 87.6 | −59.8 |
O3-H3···O5 | −2.5 | −0.9 | −7.4 | 3.1 | −7.6 | |
C4-H4···O4 | −4.7 | −1.4 | −11.5 | 7.1 | −10.5 | |
O4···C1 O4···C2 | −16.1 | −2.7 | −24.9 | 10.6 | −33.1 | |
Cl2···C1 | −8.9 | −0.7 | −39.0 | 19.8 | −28.8 | |
Polymorph 2 | O1-H1···O2 | −104.9 | −17.6 | −11.6 | 74.6 | −59.5 |
O3-H3···O5 | −5.3 | −1.0 | −7.2 | 4.5 | −9.0 | |
C4-H4···O4 | −6.9 | −0.9 | −8.4 | 6.6 | −9.6 | |
Cl2···O3 | −6.1 | −0.6 | −29.5 | 14.9 | −21.3 | |
Polymorph 3 | O1-H1···O2 | −101.0 | −16.6 | −11.1 | 72.8 | −55.9 |
C4···C4 (π···π) | −2.7 | −0.8 | −34.1 | 14.4 | −23.2 | |
C7-H7···Cl2 | −4.1 | −1.1 | −13.5 | 0 | −18.7 | |
C7···O5 | −7.6 | −2.3 | −11.9 | 4.5 | −17.3 | |
Polymorph 4 | O1-H1···O2 | −107.4 | −19.1 | −11.5 | 79.9 | −58.1 |
O3-H3···O5 | −3.7 | −0.7 | −6.8 | 2.8 | −8.4 | |
C7-H7···Cl2 | −12.8 | −1.4 | −11.2 | 7.4 | −18.0 | |
Cl1···Cl2 | 4.3 | −1.0 | −18.6 | 9.4 | −5.9 | |
O3···Cl2 | −2.8 | −0.7 | −33.0 | 15.0 | −21.5 |
Structure | Ecoul (kJ/mol) | Epol (kJ/mol) | Edisp (kJ/mol) | Erep (kJ/mol) | Elatt (kJ/mol) | Density (g/cm3) | Packing Index % |
---|---|---|---|---|---|---|---|
Polymorph 1 | −88.7 | −9.2 | −87.9 | 79.4 | −106.4 | 1.787 | 68.5 |
Polymorph 2 | −81.4 | −6.0 | −98.0 | 77.1 | −108.3 | 1.806 | 69.3 |
Polymorph 3 | −76.6 | −10.2 | −101.2 | 73.4 | −114.6 | 1.836 | 70.8 |
Polymorph 4 | −82.2 | −10.3 | −97.3 | 80.5 | −109.3 | 1.861 | 71.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miclaus, M.O.; Borodi, G.; Turza, A. Four Polymorphs of the Bioactive Diuretic Drug 4-Chloro-5-chlorosulfonyl Salicylic Acid. Crystals 2025, 15, 136. https://doi.org/10.3390/cryst15020136
Miclaus MO, Borodi G, Turza A. Four Polymorphs of the Bioactive Diuretic Drug 4-Chloro-5-chlorosulfonyl Salicylic Acid. Crystals. 2025; 15(2):136. https://doi.org/10.3390/cryst15020136
Chicago/Turabian StyleMiclaus, Maria Olimpia, Gheorghe Borodi, and Alexandru Turza. 2025. "Four Polymorphs of the Bioactive Diuretic Drug 4-Chloro-5-chlorosulfonyl Salicylic Acid" Crystals 15, no. 2: 136. https://doi.org/10.3390/cryst15020136
APA StyleMiclaus, M. O., Borodi, G., & Turza, A. (2025). Four Polymorphs of the Bioactive Diuretic Drug 4-Chloro-5-chlorosulfonyl Salicylic Acid. Crystals, 15(2), 136. https://doi.org/10.3390/cryst15020136