Persistent PbI2-Passivated Microdomains in As-Prepared MAPbI3 Perovskite Thin Film Revealed by Spatially Resolved Photoluminescence and Raman Maps
Abstract
1. Introduction
2. Materials and Methods
2.1. Perovskite Thin Film Preparation
2.2. Optical Characterization
3. Results and Discussion
3.1. Optical and Structural Characterization of MAPbI3 Thin Films
3.2. Correlation Analysis of Optical Microscopy and Spatially Resolved PL Mapping
3.3. Spatially Resolved Raman Mapping of Composition Distribution in Thin Films
3.4. Integrated Multimodal Analysis at Identical Surface Locations
3.5. Spatially Dependent Response of Thin Films to Light-Induced Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heo, J.; Kim, H.; Park, J.; Sasongko, N.A.; Jeong, M.; Han, J.; Seo, T.; Ji, Y.; Han, J.; Park, M. Long-Term Comparisons of Photoluminescence Affected by Organic Cations of Formamidinium and Methylammonium in Monophasic Lead Iodide Perovskite Quantum Dots. Chem. Asian J. 2024, 19, e202400347. [Google Scholar] [CrossRef] [PubMed]
- Sasongko, N.A.; Jeong, Y.; Paramita, S.A.; Heo, J.; Oh, M.H.; Reyes-Lillo, S.E.; Park, M. Role of Size and Shape in Photoluminescence and Ultra-Low-Frequency Raman of Methylammonium Lead Iodide Perovskite Quantum Dots. J. Phys. Chem. Lett. 2025, 16, 1522–1528. [Google Scholar] [CrossRef]
- Chen, D.Q.; Chen, X. Luminescent perovskite quantum dots: Synthesis, microstructures, optical properties and applications. J. Mater. Chem. C 2019, 7, 1413–1446. [Google Scholar] [CrossRef]
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Basumatary, P.; Agarwal, P. Photocurrent transient measurements in MAPbI3 thin films. J. Mater. Sci. Mater. Electron. 2020, 31, 10047–10054. [Google Scholar] [CrossRef]
- Hirasawa, M.; Ishihara, T.; Goto, T.; Uchida, K.; Miura, N. Magnetoabsorption of the Lowest Exciton in Perovskite-Type Compound (CH3NH3)PbI3. Physica B 1994, 201, 427–430. [Google Scholar] [CrossRef]
- Ishihara, T. Optical-Properties of PbI-Based Perovskite Structures. J. Lumin. 1994, 60–61, 269–274. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003, 127, 619–623. [Google Scholar] [CrossRef]
- De Wolf, S.; Holovsky, J.; Moon, S.J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.J.; Yum, J.H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef]
- Pansa-Ngat, P.; Kammoedmanee, S.; Semapet, N.; Sinthiptharakoon, K.; Suwanchawalit, C.; Burimart, S.; Seriwattanachai, C.; Thant, K.K.S.; Kanjanaboos, P. Mechanical and Electrical Comparative Studies of Widely Utilized Solar Perovskite Thin Films via Scanning Probe Microscopy. ACS Appl. Energy Mater. 2024, 7, 3234–3244. [Google Scholar] [CrossRef]
- Martínez, W.O.H.; Giudici, P.; Guerrero, N.B.C.; Ibarra, M.L.; Perez, M.D. Effect of high energy proton irradiation on MAPbI3 films for space applications observed by micro-Raman spectroscopy. Mater. Adv. 2020, 1, 2068–2073. [Google Scholar] [CrossRef]
- Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Graetzel, M. Predicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: The Role of Radiative and Non-Radiative Recombination. Adv. Energy Mater. 2015, 5, 1400812. [Google Scholar] [CrossRef]
- Yin, W.-J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Zhang, Q.; Ha, S.T.; Liu, X.; Sum, T.C.; Xiong, Q. Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. Nano Lett. 2014, 14, 5995–6001. [Google Scholar] [CrossRef]
- Han, S.; Hyeong, S.K.; Lee, S.K.; Shin, N. Sequential surface passivation for enhanced stability of vapor-deposited methylammonium lead iodide thin films. Chem. Eng. J. 2022, 439, 135715. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Abate, A.; Saliba, M.; Tress, W.; Jacobsson, T.J.; Grätzel, M.; Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727. [Google Scholar] [CrossRef]
- Chen, Y.C.; Meng, Q.; Xiao, Y.Y.; Zhang, X.B.; Sun, J.J.; Han, C.B.; Gao, H.L.; Zhang, Y.Z.; Lu, Y.; Yan, H. Mechanism of PbI2 in Situ Passivated Perovskite Films for Enhancing the Performance of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 44101–44108. [Google Scholar] [CrossRef] [PubMed]
- Musikpan, W.; Khampa, W.; Bhoomanee, C.; Passatorntaschakorn, W.; Ruankham, P.; Gardchareon, A.; Rodwihok, C.; Kim, H.S.; Wongratanaphisan, D. NaCl-Induced PbI2 Passivation Enhancement on Cs0.17FA0.83Pb(I0.83Br0.17)3 Thin Films for Perovskite Solar Cells. ACS Appl. Energy Mater. 2024, 7, 3049–3060. [Google Scholar] [CrossRef]
- Rabhi, S.; Sekar, K.; Kalna, K.; Hidouri, T.; Samajdar, D.P.; Ravidas, B.K.; Bencherif, H.; Fornari, R.; Albaidani, K.; Hossain, M.K. Enhancing perovskite solar cell performance through PbI2 in situ passivation using a one-step process: Experimental insights and simulations. RSC Adv. 2024, 14, 34051–34065. [Google Scholar] [CrossRef]
- He, J.; Sheng, W.; Yang, J.; Zhong, Y.; Cai, Q.; Liu, Y.; Guo, Z.; Tan, L.; Chen, Y. Synchronous Elimination of Excess Photoinstable PbI2 and Interfacial Band Mismatch for Efficient and Stable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2024, 63, e202315233. [Google Scholar] [CrossRef]
- Yang, B.; Suo, J.; Di Giacomo, F.; Olthof, S.; Bogachuk, D.; Kim, Y.; Sun, X.; Wagner, L.; Fu, F.; Zakeeruddin, S.M.; et al. Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture. ACS Energy Lett. 2021, 6, 3916–3923. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Pi, H.H.; Wei, Y.F.; Zhou, B.L.; Gao, Y.; Wen, R.; Hao, Y.Y.; Zhang, H.; Ong, B.S.; Cui, Y.X. Passivation of degradation path enables high performance perovskite nanoplatelet lasers with high operational stability. Photon. Res. 2022, 10, 1440–1452. [Google Scholar] [CrossRef]
- Ibaceta-Jaña, J.; Muydinov, R.; Rosado, P.; Kumar, S.H.B.V.; Gunder, R.; Hoffmann, A.; Szyszka, B.; Wagner, M.R. Hidden polymorphism of FAPbI3 discovered by Raman spectroscopy. Phys. Chem. Chem. Phys. 2021, 23, 9476–9482. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Jang, J.; Sasongko, N.A.; Heo, J.; Lee, S.; Kwak, K.; Kee, S.; Park, M. Enhanced Microstructural Uniformity in Sulfuric-Acid-Treated Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) Films Using Raman Map Analysis. Macromol. Rapid Commun. 2024, 45, e2400299. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, S.; Nakatake, Y.; Ishida, Y.; Talkahashi, T.; Okumura, H. Detection of defects in SiC crystalline films by Raman scattering. Physica B 2001, 308, 684–686. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Kim, Y.; Bae, S.; Bari, M.; Jung, H.R.; Jo, W.; Kim, Y.H.; Ye, Z.G.; Yoon, S. Raman Scattering Studies of the Structural Phase Transitions in Single-Crystalline CH3NH3PbCl3. J. Phys. Chem. Lett. 2020, 11, 3773–3781. [Google Scholar] [CrossRef]
- Park, M.; Kornienko, N.; Reyes-Lillo, S.E.; Lai, M.L.; Neaton, J.B.; Yang, P.D.; Mathies, R.A. Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Photochemistry. Nano Lett. 2017, 17, 4151–4157. [Google Scholar] [CrossRef]
- Pérez-Osorio, M.A.; Lin, Q.Q.; Phillips, R.T.; Milot, R.L.; Herz, L.M.; Johnston, M.B.; Giustino, F. Raman Spectrum of the Organic-Inorganic Halide Perovskite CH3NH3PbI3 from First Principles and High-Resolution Low-Temperature Raman Measurements. J. Phys. Chem. C 2018, 122, 21703–21717. [Google Scholar] [CrossRef]
- Shin, M.; Park, J.; Jeong, K.; Park, M. Determination of the absolute Raman cross-sections of α-S8 film at ultralow frequencies pumped by 488 and 785 nm lasers. Bull. Korean Chem. Soc. 2023, 44, 629–633. [Google Scholar] [CrossRef]
- Kumar Singh, R.J.; Jain, N.; Singh, J.; Kumar, R. Stability behavior of chemically synthesized organic electrolyte salts and methylammonium lead halide perovskite light harvester. Adv. Mater. Lett. 2017, 8, 707–711. [Google Scholar] [CrossRef]
- Guo, R.; Dahal, B.; Thapa, A.; Poudel, Y.R.; Liu, Y.Y.; Li, W.Z. Ambient processed (110) preferred MAPbI3 thin films for highly efficient perovskite solar cells. Nanoscale Adv. 2021, 3, 2056–2064. [Google Scholar] [CrossRef]
- Dobrovolsky, A.; Merdasa, A.; Li, J.; Hirselandt, K.; Unger, E.L.; Scheblykin, I.G. Relating Defect Luminescence and Nonradiative Charge Recombination in MAPbI3 Perovskite Films. J. Phys. Chem. Lett. 2020, 11, 1714–1720. [Google Scholar] [CrossRef]
- Condeles, J.F.; Ando, R.A.; Mulato, M. Optical and structural properties of PbI2 thin films. J. Mater. Sci. 2007, 43, 525–529. [Google Scholar] [CrossRef]
- Barbé, J.; Newman, M.; Lilliu, S.; Kumar, V.; Lee, H.K.H.; Charbonneau, C.; Rodenburg, C.; Lidzey, D.; Tsoi, W.C. Localized effect of PbI2 excess in perovskite solar cells probed by high- resolution chemical- optoelectronic mapping. J. Mater. Chem. A 2018, 6, 23010–23018. [Google Scholar] [CrossRef]
- Qaid, S.M.H.; Ghaithan, H.M.; Al-Asbahi, B.A.; Aldwayyan, A.S. Solvent Effects on the Structural and Optical Properties of MAPbI3 Perovskite Thin Film for Photovoltaic Active Layer. Coatings 2022, 12, 549. [Google Scholar] [CrossRef]
- Wiechert, D.U.; Grabowski, S.P.; Simon, M. Raman spectroscopic investigation of evaporated PbO layers. Thin Solid Films 2005, 484, 73–82. [Google Scholar] [CrossRef]
- Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J.M.; Lee, M.M.; Snaith, H.J.; Petrozza, A.; De Angelis, F. The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. J. Phys. Chem. Lett. 2013, 5, 279–284. [Google Scholar] [CrossRef]
- Pistor, P.; Ruiz, A.; Cabot, A.; Izquierdo-Roca, V. Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-destructive Characterisation Methodology. Sci. Rep. 2016, 6, 35973. [Google Scholar] [CrossRef]
- Zhou, Y.; Garces, H.F.; Padture, N.P. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films. Front. Optoelectron. 2016, 9, 81–86. [Google Scholar] [CrossRef]
- Segovia, R.; Qu, G.; Peng, M.; Sun, X.; Shi, H.; Gao, B. Evolution of Photoluminescence, Raman, and Structure of CH3NH3PbI3 Perovskite Microwires Under Humidity Exposure. Nanoscale Res. Lett. 2018, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, S. Raman study of polytypism in vapor-grown PbI2. Solid State Commun. 1975, 16, 1059–1062. [Google Scholar] [CrossRef]
- Shargaieva, O.; Kuske, L.; Rappich, J.; Unger, E.; Nickel, N.H. Building Blocks of Hybrid Perovskites: A Photoluminescence Study of Lead-Iodide Solution Species. ChemPhysChem 2020, 21, 2327–2333. [Google Scholar] [CrossRef]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Zhou, W.K.; Zhou, X.; Liu, K.H.; Yu, D.P.; Zhao, Q. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light Sci. Appl. 2017, 6, e16243. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhou, H.P.; Song, T.B.; Luo, S.; Hong, Z.R.; Duan, H.S.; Dou, L.T.; Liu, Y.S.; Yang, Y. Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Lett. 2014, 14, 4158–4163. [Google Scholar] [CrossRef] [PubMed]
- Gujar, T.P.; Unger, T.; Schönleber, A.; Fried, M.; Panzer, F.; van Smaalen, S.; Köhler, A.; Thelakkat, M. The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation. Phys. Chem. Chem. Phys. 2018, 20, 605–614. [Google Scholar] [CrossRef]
- Jacobsson, T.J.; Correa-Baena, J.P.; Anaraki, E.H.; Philippe, B.; Stranks, S.D.; Bouduban, M.E.F.; Tress, W.; Schenk, K.; Teuscher, J.; Moser, J.E.; et al. Unreacted PbI as a Double Edged Sword for Enhancing the Performance of Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138, 10331–10343. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jeon, N.J.; Noh, J.H.; Yang, W.S.; Seo, J.; Yun, J.S.; Ho-Baillie, A.; Huang, S.J.; Green, M.A.; Seidel, J.; et al. Beneficial Effects of PbI Incorporated in Organo-Lead Halide Perovskite Solar Cells. Adv. Energy Mater. 2016, 6, 1502104. [Google Scholar] [CrossRef]
- Liu, F.; Dong, Q.; Wong, M.K.; Djurišić, A.B.; Ng, A.; Ren, Z.; Shen, Q.; Surya, C.; Chan, W.K.; Wang, J.; et al. Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? Adv. Energy Mater. 2016, 6, 1502206. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-G.; Choi, J.; Seo, T.; Kim, H.S.; Kwak, M.; Jang, J.; Lee, S.; Park, M. Persistent PbI2-Passivated Microdomains in As-Prepared MAPbI3 Perovskite Thin Film Revealed by Spatially Resolved Photoluminescence and Raman Maps. Crystals 2025, 15, 991. https://doi.org/10.3390/cryst15110991
Kim B-G, Choi J, Seo T, Kim HS, Kwak M, Jang J, Lee S, Park M. Persistent PbI2-Passivated Microdomains in As-Prepared MAPbI3 Perovskite Thin Film Revealed by Spatially Resolved Photoluminescence and Raman Maps. Crystals. 2025; 15(11):991. https://doi.org/10.3390/cryst15110991
Chicago/Turabian StyleKim, Bong-Geun, Jiwon Choi, Taeji Seo, Hyun Sung Kim, Minseok Kwak, Joonkyung Jang, Songyi Lee, and Myeongkee Park. 2025. "Persistent PbI2-Passivated Microdomains in As-Prepared MAPbI3 Perovskite Thin Film Revealed by Spatially Resolved Photoluminescence and Raman Maps" Crystals 15, no. 11: 991. https://doi.org/10.3390/cryst15110991
APA StyleKim, B.-G., Choi, J., Seo, T., Kim, H. S., Kwak, M., Jang, J., Lee, S., & Park, M. (2025). Persistent PbI2-Passivated Microdomains in As-Prepared MAPbI3 Perovskite Thin Film Revealed by Spatially Resolved Photoluminescence and Raman Maps. Crystals, 15(11), 991. https://doi.org/10.3390/cryst15110991

