Characterization of Cobalt-Based Composite Multilayer Laser-Cladded Coatings
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Microstructure
3.2. Phase Composition
3.3. Hardness Evaluation
3.4. Wear Performance
3.5. Corrosion Performance
4. Conclusions
- The dilution effect inherent to laser cladding led to an increased Fe content in the bottom region of the first layer. As the number of layers increased, the Fe concentration gradually decreased toward the surface.
- All coatings exhibited partial decarburization of WC, leading to the formation of W2C. This phenomenon was more pronounced in the triple-layer coating due to the higher cumulative heat input.
- The multilayer coatings had significantly lower coefficients of friction than the single-layer coating due to their improved structural integrity and reduced WC decomposition. The lower Fe content and higher W2C fraction that results enhances hardness and wear resistance, leading to a more stable frictional response during testing.
- A lower iron content in the coating improved the corrosion resistance, as evidenced by the lowest corrosion current density. This iron reduction promoted the formation of a denser and more stable passive film, resulting in the most stable electrochemical behavior.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, J.R. Surface Engineering for Corrosion and Wear Resistance; ASM International: Novelty, OH, USA, 2001. [Google Scholar]
- Bartkowski, D.; Młynarczak, A.; Piasecki, A.; Dudziak, B.; Gościański, M.; Bartkowska, A. Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding. Opt. Laser Technol. 2015, 68, 191–201. [Google Scholar] [CrossRef]
- Poloczek, T.; Lont, A.; Górka, J. The structure and properties of laser-cladded Inconel 625/TiC composite coatings. Materials 2023, 16, 1265. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Kong, D. Friction–wear performances and oxidation behaviors of Ti3AlC2 reinforced Co–based alloy coatings by laser cladding. Surf. Coat. Technol. 2021, 408, 126816. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Liu, X.B.; Zhu, Y.; Liu, Y.F.; Meng, Y.; Liang, J.; Zhang, S.H. Stellite3–Ti3SiC2–Cu composite coatings on IN718 by laser cladding. Surf. Coat. Technol. 2022, 446, 128766. [Google Scholar] [CrossRef]
- Chen, G.-D.; Liu, X.-B.; Zhang, F.-Z.; Liu, Q.-S.; Ou, H.-Z.; Zhang, S.-H. Fabrication and tribological properties of laser cladding WC–Cu/Co-based composite coatings. Surf. Coat. Technol. 2023, 472, 129930. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Z.; Cui, X.; Feng, L.; Zhang, D.; Jin, G.; Liu, J.; Zheng, W. Effect of graphite/CeO2 on microstructure and tribological property of plasma cladded Co-based coatings. Mater. Chem. Phys. 2022, 280, 125756. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, T.; Lv, H.; Hu, D.; Zhang, Y.; Chen, H.; Chen, Y.; She, J. Microstructure and properties of Ta-reinforced cobalt based composite coatings processed by direct laser deposition. Surf. Coat. Technol. 2022, 447, 128874. [Google Scholar] [CrossRef]
- Li, M.; He, Y.; Sun, G. Microstructure and wear resistance of laser clad cobalt-based alloy multi-layer coatings. Appl. Surf. Sci. 2004, 230, 108802. [Google Scholar]
- Angelastro, A.; Campanelli, S.L.; Casalino, G.; Ludovico, A.D. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding. Adv. Mater. Sci. Eng. 2013, 2013, 615464. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Z.; Chen, J.; Qiao, Y.; Zhang, J.; Huang, Y. Effect of Rare Earth Oxides on Microstructure and Corrosion Behavior of Laser-Cladding Coating on 316L Stainless Steel. Coatings 2019, 9, 636. [Google Scholar] [CrossRef]
- Costa, J.M.; Porto, M.B.; Amancio, R.J.; Almeida Neto, A.F. Effects of Tungsten and Cobalt Concentration on Microstructure and Anticorrosive Property of Cobalt-Tungsten Alloys. Surf. Interfaces 2020, 20, 100626. [Google Scholar] [CrossRef]
- Zhai, Y.; Guo, X.; He, Y.; Li, Z. Corrosion resistance and mechanical properties of electrodeposited Co–W/ZrO2 composite coatings. Int. J. Electrochem. Sci. 2023, 18, 100015. [Google Scholar] [CrossRef]
- Ding, L.; Hu, S. Effect of Nano-CeO2 on Microstructure and Wear Resistance of Co-Based Coatings. Surf. Coat. Technol. 2015, 276, 256–257. [Google Scholar] [CrossRef]
- Anghel, I.-M.; Uțu, I.-D.; Pascu, A.; Hulka, I.; Woelk, D.H.; Mărginean, G. Microstructure and properties of Co-based laser cladded composite coatings. Mater. Test. 2024, 66, 665–674. [Google Scholar] [CrossRef]
- ASTM G99-17; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International: West Conshohocken, PA, USA, 2017.
- Hulka, I.; Utu, D.; Serban, V.A.; Negrea, P.; Lukáč, F.; Chráska, T. Effect of Ti Addition on Microstructure and Corrosion Properties of Laser Cladded WC-Co/NiCrBSi(Ti) Coatings. Appl. Surf. Sci. 2020, 504, 144349. [Google Scholar] [CrossRef]
- Xiao, D.; Jiang, F.; Song, T.; Wei, C.; Zhang, Y.; Liang, P.; Yang, F. Impact of Dilution on the Microstructural Evolution and Corrosion Behavior in High-Entropy Alloy Coatings Applied via Laser Cladding on Marine Engineering Equipment. Eng. Fail. Anal. 2025, 171, 109337. [Google Scholar] [CrossRef]
- Bolelli, G.; Hulka, I.; Koivuluoto, H.; Lusvarghi, L.; Milanti, A.; Niemi, K.; Vuoristo, P. Properties of WC—FeCrAl Coatings Manufactured by Different High Velocity Thermal Spray Processes. Surf. Coat. Technol. 2014, 247, 74–89. [Google Scholar] [CrossRef]
- Korobov, Y.; Alwan, H.; Soboleva, N.; Makarov, A.; Lezhnin, N.; Shumyakov, V.; Antonov, M.; Deviatiarov, M. Cavitation Resistance of WC-10Co4Cr and WC-20CrC-7Ni HVAF Coatings. J. Therm. Spray Technol. 2022, 31, 234–246. [Google Scholar] [CrossRef]
- Venkatesh, L.; Samajdar, I.; Tak, M.; Doherty, R.D.; Gundakaram, R.C.; Prasad, K.S.; Joshi, S.V. Microstructure and Phase Evolution in Laser Clad Chromium Carbide-NiCrMoNb. Appl. Surf. Sci. 2015, 357, 2391–2401. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Gee, M.; Zhang, H.; Liu, X.; Song, X. Sliding Wear Resistance Enhancement by Controlling W2C Precipitation in HVOF Sprayed WC-Based Cermet Coating. Surf. Coat. Technol. 2020, 387, 125533. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Mi, G.; Wang, J.; Pan, Y. Effect of Fe Content on Microstructure and Properties of Laser Cladding Inconel 625 Alloy. Materials 2022, 15, 8200. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, Y.; Li, S.; Yan, X.; Wang, S.; Zhuo, X. Effect of Fe Content on the Microstructure and Wear Resistance of AlCoCrFeNi High-Entropy Alloy Coating Prepared by Laser Cladding. Appl. Surf. Sci. 2025, 685, 162019. [Google Scholar] [CrossRef]
- Yu, Y.; Ding, W.; Wang, X.; Mo, D.; Chen, F. Study on Microstructure and Wear Resistance of Multi-Layer Laser Cladding Fe901 Coating on 65 Mn Steel. Materials 2025, 18, 3505. [Google Scholar] [CrossRef]
- Zhu, H.; Ouyang, M.; Hu, J.; Zhang, J.; Qiu, C. Design and Development of TiC-Reinforced 410 Martensitic Stainless Steel Coatings Fabricated by Laser Cladding. Ceram. Int. 2021, 47, 12505–12513. [Google Scholar] [CrossRef]
- Potgieter, J.H. Alloys cathodically modified with noble metals. J. Appl. Electrochem. 1991, 21, 471–482. [Google Scholar] [CrossRef]







| Element | Sample 1 | Sample 2 | Sample 3 |
|---|---|---|---|
| Fe [wt.%] | 28.65 | 18.39 | 16.33 |
| Cr [wt.%] | 22.53 | 23.28 | 24.28 |
| Co [wt.%] | 18.19 | 30.19 | 31.28 |
| Ni [wt.%] | 16.17 | 13.75 | 13.55 |
| C [wt.%] | 11.04 | 10.24 | 9.98 |
| W [wt.%] | 2.67 | 4.14 | 4.57 |
| Co + 30 wt.% WC | HV 0.3 |
|---|---|
| 1 layer (sample 1) | 825 ± 18 |
| 2 layers (sample 2) | 866 ± 35 |
| 3 layers (sample 3) | 879 ± 70 |
| Sample | icorr (μA·cm−2) | E (mV) |
|---|---|---|
| Co + 1 layer | 0.117 | −259.22 |
| Co + 2 layers | 0.105 | −237.61 |
| Co + 3 layers | 0.091 | −218.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anghel, I.-M.; Pascu, A.; Hulka, I.; Woelk, D.H.; Uțu, I.-D.; Mărginean, G. Characterization of Cobalt-Based Composite Multilayer Laser-Cladded Coatings. Crystals 2025, 15, 970. https://doi.org/10.3390/cryst15110970
Anghel I-M, Pascu A, Hulka I, Woelk DH, Uțu I-D, Mărginean G. Characterization of Cobalt-Based Composite Multilayer Laser-Cladded Coatings. Crystals. 2025; 15(11):970. https://doi.org/10.3390/cryst15110970
Chicago/Turabian StyleAnghel, Iasmina-Mădălina, Alexandru Pascu, Iosif Hulka, Dino Horst Woelk, Ion-Dragoș Uțu, and Gabriela Mărginean. 2025. "Characterization of Cobalt-Based Composite Multilayer Laser-Cladded Coatings" Crystals 15, no. 11: 970. https://doi.org/10.3390/cryst15110970
APA StyleAnghel, I.-M., Pascu, A., Hulka, I., Woelk, D. H., Uțu, I.-D., & Mărginean, G. (2025). Characterization of Cobalt-Based Composite Multilayer Laser-Cladded Coatings. Crystals, 15(11), 970. https://doi.org/10.3390/cryst15110970

