Effect of Annealing Temperature on Morphology and Electrochromic Performance of Electrodeposited WO₃ Thin Films
Abstract
1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Synthesis of WO3 Films
3. Material Characterization
4. Results and Discussion
4.1. XRD Elucidation
4.2. Morphological Study
4.3. X-Ray Photoelectron Spectroscopy (XPS) Analysis
5. Electrochromic Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dadkhah, M.; Nine, M.J.; Purasinhala, K.; Sandhu, G.S.; Losic, D. Nanostructure-dependent colouration efficiency of electrochromic coatings using 0D, 1D, and 2D WO3 for smart windows. Nano Mater. Sci. 2024. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Y.M.; Cai, Y.; Yang, B.; Gu, C.; Zhang, S.X.A. Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 2020, 49, 8687–8720. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Wang, J.; Zhang, P.; Lei, P.; Gao, Y.; Ren, R.; Zhang, S.; Zhu, R.; Cai, G. Insight into the structure–activity relationship in electrochromism of WO3 with rational internal cavities for broadband tunable smart windows. Chem. Eng. J. 2023, 470, 144130. [Google Scholar] [CrossRef]
- Han, Z.; Tong, M.; Zhang, C.; Guo, X.; Chen, Y.; Chen, W.; Zhong, H.; Wan, J.; Cai, S.; Ma, Y.; et al. Unlocking dual-band electrochromism with stacked structure of amorphous tungsten oxide and Prussian blue. Sol. Energy Mater. Sol. Cells 2024, 273, 112939. [Google Scholar] [CrossRef]
- Hou, F.; Wei, W.; Yang, J.; Zhang, X.; Li, Z.; Wei, A. In situ carbothermal reduction of oxygen vacancies in monoclinic WO3-x film for dual-band electrochromic windows. Ceram. Int. 2024, 50, 33400–33408. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, J.; Chen, X.; Zheng, Y.; Wang, X.; Ge, R.; Jiang, C.; Xu, G.; Zhong, L.; Zhu, Y.; et al. Unveiling dynamics evolution mechanism of electrochromic process in WO3−x film with thickness dependence. Electrochim. Acta 2024, 505, 144958. [Google Scholar] [CrossRef]
- Hajimazdarani, M.; Eshraghi, M.J.; Ghasali, E.; Kolahdouz, M. Cost-effective deposition of WO3 films by AACVD method for electrochromic applications: Influence of precursor concentration. Ceram. Int. 2024, 50, 36872–36883. [Google Scholar] [CrossRef]
- Sun, X.; Li, Q.; Liu, N.; Wang, B.; Zhang, X.; Qian, H.; Lv, Y.; Rong, X.; Wu, G.; Wang, X. Interface engineering of SnO2 to enhance the cycle stability of WO3 and Prussian blue for complementary electrochromic smart windows and energy storage. Ceram. Int. 2024, 50, 33630–33637. [Google Scholar] [CrossRef]
- Usha, K.S.; Lee, S.Y. Fast-switching electrochromic smart windows based on WO3 doped NiO thin films. J. Alloys Compd. 2024, 1009, 176774. [Google Scholar] [CrossRef]
- Usha, K.S.; Lee, S.Y. Rapid thermal annealing treatment on WO3 thin films for energy efficient smart windows. Ceram. Int. 2024, 50, 23244–23255. [Google Scholar] [CrossRef]
- Su, J.; Chen, L.; Xu, C.; Liu, Y.; Shen, L.; He, Z. Recent review on self-supported one-dimensional core/shell nanostructures based on WO for enhanced electrochromism. J. Mater. Chem. A 2024, 29383–29401. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B.; Chen, J.; Li, H. Breakthrough application of electrochromism: Multifunctional artificial muscle. iScience 2024, 27, 109091. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhang, L.; Liu, Y.; Wang, G.; Xiang, X. Advances in visualization and thermal management of electrochromic materials. J. Mater. Chem. C 2024, 15833–15854. [Google Scholar] [CrossRef]
- Au, B.W.-C.; Tamang, A.; Knipp, D.; Chan, K.Y. Post-annealing effect on the electrochromic properties of WO3 films. Opt. Mater. 2020, 108, 110426. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Deepa, M.; Singh, S.; Kishore, R.; Agnihotry, S.A. Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films. Solid State Ion. 2005, 176, 1161–1168. [Google Scholar] [CrossRef]
- Deepa, M.; Kar, M.; Agnihotry, S.A. Electrodeposited tungsten oxide films: Annealing effects on structure and electrochromic performance. Thin Solid Film. 2004, 468, 32–42. [Google Scholar] [CrossRef]
- Ahn, K.S.; Lee, S.H.; Dillon, A.C.; Tracy, C.E.; Pitts, R. The effect of thermal annealing on photoelectrochemical responses of WO3 thin films. J. Appl. Phys. 2007, 101, 093524. [Google Scholar] [CrossRef]
- Ng, C.Y.; Razak, K.A.; Lockman, Z. Effect of annealing on acid-treated WO3·H2O nanoplates and their electrochromic properties. Electrochim. Acta 2015, 178, 673–681. [Google Scholar] [CrossRef]
- Madhuri, K.V.; Babu, M.B. Influence of substrate temperature on growth and Electrochromic properties of WO3 thin films. Optik 2018, 174, 470–480. [Google Scholar] [CrossRef]
- Bae, J.; Seo, D.G.; Park, S.M.; Park, K.T.; Kim, H.; Moon, H.C.; Kim, S.H. Optimized low-temperature fabrication of WO3 films for electrochromic devices. J. Phys. D Appl. Phys. 2017, 50, 465105. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, K.; Zhang, X. Effects of Annealing Temperature on Optical Band Gap of Sol-gel Tungsten Trioxide Films. Micromachines 2018, 9, 377. [Google Scholar] [CrossRef] [PubMed]
- Kadam, A.; Bhosale, N. Fabrication of an electrochromic device by using WO3 thin films synthesized using facile single-step hydrothermal process. Thin Solid Film. 2019, 673, 86–93. [Google Scholar] [CrossRef]
- He, T.; Ma, Y.; Cao, Y.; Yang, W.; Yao, J.; Bhosale, N. Enhanced electrochromism of WO3 thin film by gold nanoparticles. J. Electroanal. Chem. 2001, 514, 129–132. [Google Scholar] [CrossRef]
- Morankar, P.J.; Amate, R.U.; Chavan, G.T.; Teli, A.M.; Dalavi, D.S.; Jeon, C.W. Improved electrochromic performance of potentiostatically electrodeposited nanogranular WO3 thin films. J. Alloys Compd. 2023, 945, 169363. [Google Scholar] [CrossRef]
- Joraid, A.A.; Alamri, S.N. Effect of annealing on structural and optical properties of WO3 thin films prepared by electron-beam coating. Phys. B Condens. Matter. 2007, 391, 199–205. [Google Scholar] [CrossRef]
- Joraid, A.A. Comparison of electrochromic amorphous and crystalline electron beam deposited WO3 thin films. Curr. Appl. Phys. 2009, 9, 73–79. [Google Scholar] [CrossRef]
- Morankar, P.J.; Amate, R.U.; Teli, A.M.; Beknalkar, S.A.; Jeon, C.W. Exploring electrochromic performance via layered deposition of tungsten oxide on niobium oxide composite electrode. J. Power Sources 2024, 613, 234930. [Google Scholar] [CrossRef]
- Deepa, M.; Srivastava, A.K.; Saxena, T.K.; Agnihotry, S.A. Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films. Appl. Surf. Sci. 2005, 252, 1568–1580. [Google Scholar] [CrossRef]
- Brezesinski, T.; Rohlfing, D.F.; Sallard, S.; Antonietti, M.; Smarsly, B.M. Highly crystalline WO3 thin films with ordered3D mesoporosity and improved electrochromic performance. Small 2006, 2, 1203–1211. [Google Scholar] [CrossRef]
- Morankar, P.J.; Amate, R.U.; Teli, A.M.; Beknalkar, S.A.; Chavan, G.T.; Ahir, N.A.; Jeon, C.W. Nanogranular advancements in molybdenum-doped tungsten oxide for superior electrochromic energy storage. J. Energy Storage 2024, 84, 110978. [Google Scholar] [CrossRef]
- Buch, V.R.; Chawla, A.K.; Rawal, S.K. Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today Proc. 2016, 3, 1429–1437. [Google Scholar] [CrossRef]
- Regragui, M.; Addou, M.; Outzourhit, A.; El Idrissi, E.; Kachouane, A.; Bougrine, A. Electrochromic effect in WO3 thin films prepared by spray pyrolysis. Sol. Energy Mater. Sol. Cells 2003, 77, 341–350. [Google Scholar] [CrossRef]
- Regragui, M.; Addou, M.; El Idrissi, B.; Bernède, J.C.; Outzourhit, A.; Ec-chamikh, E. Effect of the annealing time on the physico-chemical properties of WO3 thin films prepared by spray pyrolysis. Mater. Chem. Phys. 2001, 70, 84–89. [Google Scholar] [CrossRef]
- Morankar, P.J.; Amate, R.U.; Teli, A.M.; Chavan, G.T.; Beknalkar, S.A.; Dalavi, D.S.; Ahir, N.A.; Jeon, C.W. Surfactant integrated nanoarchitectonics for controlled morphology and enhanced functionality of tungsten oxide thin films in electrochromic supercapacitors. J. Energy Storage 2023, 73, 109095. [Google Scholar] [CrossRef]
- Sallard, S.; Brezesinski, T.; Smarsly, B.M. Electrochromic stability of WO3 thin films with nanometer-scale periodicity and varying degrees of crystallinity. J. Phys. Chem. C 2007, 111, 7200–7206. [Google Scholar] [CrossRef]
- Jittiarporn, P.; Sikong, L.; Kooptarnond, K.; Taweepreda, W.; Stoenescu, S.; Badilescu, S.; Van Truong, V. Electrochromic properties of MoO3-WO3 thin films prepared by a sol-gel method, in the presence of a triblock copolymer template. Surf. Coat. Technol. 2017, 327, 66–74. [Google Scholar] [CrossRef]
- Avellaneda, C.O.; Bueno, P.R.; Faria, R.C.; Bulhões, L.O.S. Electrochromic Properties of Lithium Doped WO3 Films Prepared by the Sol-Gel Process. Electrochim. Acta 2001, 46, 1977–1981. [Google Scholar] [CrossRef]
- Amate, R.U.; Morankar, P.J.; Chavan, G.T.; Teli, A.M.; Desai, R.S.; Dalavi, D.S.; Jeon, C.W. Bi-functional electrochromic supercapacitor based on hydrothermal-grown 3D Nb2O5 nanospheres. Electrochim. Acta 2023, 459, 142522. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, G.; Guo, K.; Guo, D.; Shi, M.; Ning, H.; Qiu, T.; Chen, J.; Fu, X.; Yao, R.; et al. Ediect of the ammonium tungsten precursor solution with the modification of glycerol on wide band gap WO3 thin film and its electrochromic properties. Micromachines 2020, 11, 311. [Google Scholar] [CrossRef]
- Wang, C.K.; Sahu, D.; Wang, S.C.; Huang, J.L. Electrochromic Nb-doped WO3 films: Effects of post annealing. Ceram. Int. 2012, 38, 2829–2833. [Google Scholar] [CrossRef]
- Han, J.; Ko, K.W.; Sarwar, S.; Lee, M.S.; Park, S.; Hong, S.; Han, C.H. Enhanced electrochromic properties of TiO2 nanocrystal embedded amorphous WO3 films. Electrochim. Acta 2018, 278, 396–404. [Google Scholar] [CrossRef]
- Liao, C.C.; Chen, F.R.; Kai, J.J. Annealing effect on electrochromic properties of tungsten oxide nanowires. Sol. Energy Mater. Sol. Cells 2007, 91, 1258–1266. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Wang, L.; Zhao, Y.; Zhang, X.; Li, Y.; Zhao, J. Annealing effect on the electrochromic properties of amorphous WO3 films in Mg2+ based electrolytes. Mater. Chem. Phys. 2021, 270, 124745. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Dong, G.; Wang, H.; Yan, H. Efficient electrochromic device based on sol–gel prepared WO3 films. Ionics 2015, 21, 2879–2887. [Google Scholar] [CrossRef]
- Kim, C.Y.; Park, S. Electrochromic properties of WO3 thin film with various heat-treatment temperature. Asian J. Chem. 2013, 25, 5874–5878. [Google Scholar] [CrossRef]
- Gillaspie, D.T.; Tenent, R.C.; Dillon, A.C. Metal-oxide films for electrochromic applications: Present technology and future directions. J. Mater. Chem. 2010, 20, 9585–9592. [Google Scholar] [CrossRef]
- Deepa, M.; Srivastava, A.K.; Agnihotry, S.A. Influence of annealing on electrochromic performance of template assisted, electrochemically grown, nanostructured assembly of tungsten oxide. Acta Mater. 2006, 54, 4583–4595. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, H.W.; Kim, K.H. Properties of WO3−x electrochromic thin film prepared by reactive sputtering with various post annealing temperatures. Jpn J. Appl. Phys. 2013, 52, 7–12. [Google Scholar] [CrossRef]
- Abareshi, A.; Haratizadeh, H. Effect of annealing temperature on optical and electrochromic properties of tungsten oxide thin films. Iran. J. Phys. Res. 2016, 16, 47–54. [Google Scholar] [CrossRef]
- Reddy, G.V.; Naveen, K.K.; Abdul, S.S. Electrochromic Properties of RF-Sputtered WO3 Films: An Impact of Post-annealing and Room Temperatures for Smart Window Applications. Braz. J. Phys. 2024, 54, 227. [Google Scholar] [CrossRef]
Sample Code | Diffusion Coefficient (cm2/s × 10−9) | (C/cm2) | (C/cm2) | Reversibility | tc (s) | tb (s) | Tb (%) | Tc (%) | ΔT600nm (%) | ΔOD | Coloration Efficiency (cm2/C) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction | Oxidation | |||||||||||
W-50 °C | 0.63 | 0.25 | 0.063 | 0.062 | 98.41% | 8.4 | 4.2 | 91.30 | 18.80 | 72.50 | 1.58 | 50.15 |
W-250 °C | 2.61 | 0.86 | 0.048 | 0.047 | 99.00% | 9.8 | 7.5 | 87.65 | 8.30 | 79.35 | 2.35 | 97.91 |
W-450 °C | 0.53 | 0.25 | 0.090 | 0.089 | 97.91% | 8.8 | 3.7 | 91.30 | 50.72 | 40.58 | 0.58 | 12.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morankar, P.J.; Amate, R.U.; Yewale, M.A.; Jeon, C.-W. Effect of Annealing Temperature on Morphology and Electrochromic Performance of Electrodeposited WO₃ Thin Films. Crystals 2024, 14, 1038. https://doi.org/10.3390/cryst14121038
Morankar PJ, Amate RU, Yewale MA, Jeon C-W. Effect of Annealing Temperature on Morphology and Electrochromic Performance of Electrodeposited WO₃ Thin Films. Crystals. 2024; 14(12):1038. https://doi.org/10.3390/cryst14121038
Chicago/Turabian StyleMorankar, Pritam J., Rutuja U. Amate, Manesh A. Yewale, and Chan-Wook Jeon. 2024. "Effect of Annealing Temperature on Morphology and Electrochromic Performance of Electrodeposited WO₃ Thin Films" Crystals 14, no. 12: 1038. https://doi.org/10.3390/cryst14121038
APA StyleMorankar, P. J., Amate, R. U., Yewale, M. A., & Jeon, C.-W. (2024). Effect of Annealing Temperature on Morphology and Electrochromic Performance of Electrodeposited WO₃ Thin Films. Crystals, 14(12), 1038. https://doi.org/10.3390/cryst14121038