Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Growth from the Starting Materials with the Nominal Composition YTiO3
3.2. Growth from the Oxygen-Deficient Starting Materials with Nominal Compositions YTiO2.925 and YTiO2.85
3.3. The Formation of TiN Coating
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MacLean, D.A.; Ng, H.-N.; Greedan, J.E. Crystal structures and crystal chemistry of the RETiO3 perovskites: RE = La, Nd, Sm, Gd, Y. J. Solid State Chem 1979, 30, 35–44. [Google Scholar] [CrossRef]
- Greedan, J.E. The rare earth-titanium (III) perovskite oxides—An isostructural series with a remarkable variation in physical properties. J. Less-Common Met. 1985, 111, 335–345. [Google Scholar] [CrossRef]
- Tokura, Y. Fillingness dependence of electronic structures in strongly correlated electron systems Titanates and vanadates. J. Phys. Chm. Solids 1992, 53, 1619–1625. [Google Scholar] [CrossRef]
- Ishihara, S. Chapter 5. Titanates and Vanadates. In Physics of Transition Metal Oxides; Maekawa, S., Tohyama, T., Barnes, S.E., Ishihara, S., Koshibae, W., Khaliullin, G., Eds.; Springer Series in Solid-State Sciences 144; Springer: Berlin/Heidelberg, Germany, 2004; pp. 225–238. [Google Scholar]
- Guo, Y.; Langlois, J.-M.; Goddard, W.A. Electronic Structure and Valence-Bond Band Structure of Cuprate Superconducting Materials. Science 1988, 239, 896–899. [Google Scholar] [CrossRef]
- Mochizuki, M.; Imada, M. Orbital physics in the perovskite Ti oxides. New J. Phys. 2004, 6, 154. [Google Scholar] [CrossRef]
- Goral, J.P.; Greedan, J.E.; MacLean, D.A. Magnetic Behavior in the Series LaxY1-xTiO3. J. Solid State Chem. 1982, 43, 244. [Google Scholar] [CrossRef]
- Zhou, H.D.; Goodenough, J.B. Evidence for two electronic phases in Y1-xLaxTiO3 from thermoelectric and magnetic susceptibility measurements. Phys. Rev. B 2005, 71, 184431. [Google Scholar] [CrossRef]
- Li, B.; Louca, D.; Niedziela, J.; Li, Z.; Zhang, L.; Zhou, J.; Goodenough, J.B. Lattice and magnetic dynamics in perovskite Y1-xLaxTiO3. Phys. Rev. B 2016, 94, 224301. [Google Scholar] [CrossRef]
- Hameed, S.; El-Khatib, S.; Olson, K.P.; Yu, B.; Williams, T.J.; Hong, T.; Sheng, Q.; Yamakawa, K.; Zang, J.; Uemura, Y.J.; et al. Nature of the ferromagnetic-antiferromagnetic transition in Y1-xLaxTiO3. Phys. Rev. B 2021, 104, 024410. [Google Scholar] [CrossRef]
- Fujishima, Y.; Tokura, Y.; Arima, T.; Uchida, S. Optical-conductivity spectra of Sr1-xLaxTiO3: Filling-dependent effect of the electron correlation. Phys. Rev. B 1992, 46, 11167. [Google Scholar] [CrossRef]
- Tokura, Y.; Taguchi, Y.; Okada, Y.; Fujishima, Y.; Arima, T.; Kumagai, K.; Iye, Y. Filling dependence of electronic properties on the verge of metal–Mott-insulator transition in Sr1-xLaxTiO3. Phys. Rev. Lett. 1993, 70, 2126. [Google Scholar] [CrossRef]
- Okada, Y.; Arima, T.; Tokura, Y.; Murayama, C.; Môri, N. Doping- and pressure-induced change of electrical and magnetic properties in the Mott-Hubbard insulator LaTiO3 (La3+Ti3+O3). Phys. Rev. B 1993, 48, 9677. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, Y.; Tokura, Y.; Arima, T.; Inaba, F. Change of electronic structures with carrier doping in the highly correlated electron system Y1-xCaxTiO3. Phys. Rev. B 1993, 48, 511. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Taguchi, Y.; Moritomo, Y.; Kumagai, K.; Suzuki, T.; Iye, Y. Barely metallic states with enhanced carrier mass in Y1-xCaxTiO3. Phys. Rev. B 1993, 48, 14063. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Suzuki, T.; Taguchi, Y.; Okada, Y.; Fujishima, Y.; Tokura, Y. Metal-insulator transition in La1-xSrxTiO3 and Y1-xCaxTiO3 investigated by specific-heat measurements. Phys. Rev. B 1993, 48, 7636. [Google Scholar] [CrossRef]
- Katsufuji, T.; Taguchi, Y.; Tokura, Y. Transport and magnetic properties of a Mott-Hubbard system whose bandwidth and band filling are both controllable: R1-xCaxTiO3+y/2. Phys. Rev. B 1997, 56, 10145. [Google Scholar] [CrossRef]
- Furukawa, Y.; Okamura, I.; Kumagai, K.; Goto, T.; Fukase, T.; Taguchi, Y.; Tokura, Y. La1-xSrxTiO3 by 47/49Ti and 139La nuclear magnetic resonance. Phys. Rev. B 1999, 59, 10550. [Google Scholar] [CrossRef]
- Tsubota, M.; Iga, F.; Nakano, T.; Uchihira, K.; Kura, S.; Takemura, M.; Bando, Y.; Umeo, K.; Takabatake, T.; Nishibori, E.; et al. Hole-doping and Pressure Effects on the Metal–Insulator Transition in Single Crystals of Y1-xCaxTiO3 (0.37<x<0.41). J. Phys. Soc. Jpn. 2003, 72, 3182–3188. [Google Scholar]
- Hays, C.C.; Zhou, J.-S.; Markert, J.T.; Goodenough, J.B. Electronic transition in La1-xSrxTiO3. Phys. Rev. B 1999, 60, 10367. [Google Scholar] [CrossRef]
- Disa, A.S.; Curtis, J.; Fechner, M.; Liu, A.; von Hoegen, A.; Först, M.; Nova, T.F.; Narang, P.; Maljuk, A.; Boris, A.V.; et al. Photo-induced high-temperature ferromagnetism in YTiO3. Nature 2023, 617, 73–78. [Google Scholar] [CrossRef]
- Komarek, A.C.; Roth, H.; Cwik, M.; Stein, W.-D.; Baier, J.; Kriener, M.; Bourée, F.; Lorenz, T.; Braden, M. Magnetoelastic coupling in RTiO3 (R = La, Nd, Sm, Gd, Y) investigated with diffraction techniques and thermal expansion measurements. Phys. Rev. B 2007, 75, 224402. [Google Scholar] [CrossRef]
- Knafo, W.; Meingast, C.; Boris, A.V.; Popovich, P.; Kovaleva, N.N.; Yordanov, P.; Maljuk, A.; Kremer, R.K.; v. Löhneysen, H.; Keimer, B. Ferromagnetism and lattice distortions in the perovskite YTiO3. Phys. Rev. B 2009, 79, 054431. [Google Scholar] [CrossRef]
- Garrett, J.D.; Greedan, J.E.; MacLean, D.A. Crystal growth and magnetic anisotropy of YTiO3. Mat. Res. Bull. 1981, 16, 145–148. [Google Scholar] [CrossRef]
- MacLean, D.A.; Greedan, J.E. Crystal growth, electrical resistivity, and magnetic properties of lanthanum titanate and cerium titanate Evidence for a metal-semiconductor transition. Inorg. Chem. 1981, 20, 1025–1029. [Google Scholar] [CrossRef]
- Kikugawa, N. Recent Progress of Floating-Zone Techniques for Bulk Single-Crystal Growth. Crystals 2024, 14, 552. [Google Scholar] [CrossRef]
- Hameed, S.; Joe, J.; Thoutam, L.R.; Garcia-Barriocanal, J.; Yu, B.; Yu, G.; Chi, S.; Hong, T.; Williams, T.J.; Freeland, J.W.; et al. Growth and characterization of large (Y, La)TiO3 and (Y, Ca)TiO3 single crystals. Phys. Rev. Mater. 2021, 5, 125003. [Google Scholar] [CrossRef]
- Taguchi, Y.; Okuda, T.; Ohashi, M.; Murayama, C.; Môri, N.; Iye, Y.; Tokura, Y. Critical behavior in LaTiO3+δ/2 in the vicinity of antiferromagnetic instability. Phys. Rev. B 1999, 59, 7917. [Google Scholar] [CrossRef]
- Lichtenberg, F.; Widmer, D.; Bednorz, J.G.; Williams, T.; Relier, A. Phase diagram of LaTiOx: From 2D layered ferroelectric insulator to 3D weak ferromagnetic semiconductor. Z. Phys. B-Condens. Matter 1991, 82, 211–216. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29 (Suppl. S2), S13–S18. [Google Scholar] [CrossRef]
- Agilent. CrysAlis PRO; Agilent Technologies Ltd.: Yarnton, UK, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal. Acta Cryst. 2015, A71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Westrip, S.P. publCIF: Software for editing, validating and formatting crystallographic information files. J. Appl. Cryst. 2010, 43, 920–925. [Google Scholar] [CrossRef]
- Roth, H. Single Crystal Growth and Electron Spectroscopy of d1-Systems. Ph.D. Thesis, The University of Cologne, Köln, Germany, 2008. [Google Scholar]
- Mizutani, N.; Tajima, Y.; Kato, M. Phase Relations in the System Y2O3-TiO2. J. Am. Ceram. Soc. 1976, 59, 168. [Google Scholar] [CrossRef]
- Villars, P. (Ed.) O-Ti-Y Vertical Section of Ternary Phase Diagram; Pauling File in: Inorganic Solid Phases, Springer Materials (online database); Springer: Berlin/Heidelberg, Germany, 2023; Available online: https://materials.springer.com/isp/phase-diagram/docs/c_0210439 (accessed on 1 January 2021).
- Shepelev, Y.F.; Petrova, M.A. Crystal Structures of Ln2TiO5 (Ln = Gd, Dy) Polymorphs. Inorg. Mater. 2008, 44, 1354–1361. [Google Scholar] [CrossRef]
- Palmer, R.A.; Doan, T.M.; Lloyd, P.G.; Jarvis, B.L.; Ahmed, N.U. Reduction of TiO2 with Hydrogen Plasma. Plasma Chem. Plasma Process. 2002, 22, 335–350. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, Y.; Ma, C.; Sun, J.; Li, H.; Yue, X. Formation mechanism of the TiN containing coating on the Al2O3-Ti2O3 composite at 1400 °C nitrogen-blowing. Ceram. Int. 2023, 49, 13119–13124. [Google Scholar] [CrossRef]
- Spengler, W.; Kaiser, R.; Christensen, A.N.; Müller-Vogt, G. Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN. Phys. Rev. B 1978, 17, 1095–1101. [Google Scholar] [CrossRef]
- Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I.J. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition. Supercond. Sci. Technol. 2018, 31, 055017. [Google Scholar] [CrossRef]
Starting materials | Stoichiometric ratio YTiO3 | Y2O3 + Ti2O3 → 2YTiO3 |
Oxygen deficient YTiO2.925 | Y2O3 + 0.95Ti2O3 + 0.1Ti → 2YTiO2.925 | |
Oxygen deficient YTiO2.85 | Y2O3 + 0.9Ti2O3 + 0.2Ti → 2YTiO2.85 | |
Gas atmosphere | Argon | |
97% Ar + 3% H2 | ||
95% N2 + 5% H2 | ||
Growth rate | Slow 2 mm/h | The growth rate indicates the travelling speed of seed rod. The feed rod moves 5–10% faster than the seed rod to maintain the stable molten zone and uniform shape of as-grown rod. |
Middle 4–5 mm/h | ||
Fast 10 mm/h | ||
Pressure | Atmosphere pressure | Gas flow rate 80–120 mL/min |
2 bar | 97% Ar + 3% H2 | |
Rotation speed | 15 rpm | The upper and lower shafts rotate in an opposite direction but at the same speed. |
Batch | A | B | C | |
---|---|---|---|---|
a (Å) | 5.6807(3) | 5.6860(3) | 5.6995(1) | |
b (Å) | 7.6204(4) | 7.6108(3) | 7.6297(2) | |
c (Å) | 5.3391(2) | 5.3378(2) | 5.3455(1) | |
V (Å3) | 231.13(2) | 230.99(2) | 232.45(1) | |
Bond angles (°) Ti1—O1—Ti1 | 143.69(9) | 144.04(9) | 143.35(6) | |
Bond angles (°) Ti1—O2—Ti1 | 140.97(13) | 140.73(13) | 140.09(10) | |
Atoms | ||||
Y(1) | x | 0.42721(6) | 0.42719(7) | 0.42690(4) |
y | 0.25 | 0.25 | 0.25 | |
z | 0.02056(6) | 0.02060(6) | 0.02084(5) | |
Occ | 1 4c | 1 4c | 1 4c | |
Ti(1) | x | 0 | 0 | 0 |
y | 0 | 0 | 0 | |
z | 0 | 0 | 0 | |
Occ | 1 4a | 1 4a | 1 4a | |
O(1) | x | 0.04130(4) | 0.04140(4) | 0.04290(3) |
y | 0.25 | 0.25 | 0.25 | |
z | −0.11860(5) | −0.11930(5) | −0.12120(3) | |
Occ | 1 4c | 1 4c | 1 4c | |
O(2) | x | 0.19050(3) | 0.19160(3) | 0.19030(2) |
y | 0.05800(2) | 0.05750(2) | 0.05883(16) | |
z | 0.30900(3) | 0.3090(3) | 0.30970(2) | |
Occ | 1 8d | 1 8d | 1 8d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Bi, D.W.; Magrez, A. Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation. Crystals 2024, 14, 989. https://doi.org/10.3390/cryst14110989
Liu Y, Bi DW, Magrez A. Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation. Crystals. 2024; 14(11):989. https://doi.org/10.3390/cryst14110989
Chicago/Turabian StyleLiu, Yong, David Wenhua Bi, and Arnaud Magrez. 2024. "Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation" Crystals 14, no. 11: 989. https://doi.org/10.3390/cryst14110989
APA StyleLiu, Y., Bi, D. W., & Magrez, A. (2024). Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation. Crystals, 14(11), 989. https://doi.org/10.3390/cryst14110989