Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity
Abstract
1. Introduction
2. Materials
3. Synthesis and Characterization
4. Degradation Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.F.; Zhang, Q.; Xiong, Q.H.; Sum, T.M. Tailoring the Lasing Modes in Semiconductor Nanowire Cavities Using Intrinsic Self-Absorption. Nano Lett. 2013, 13, 1080. [Google Scholar] [CrossRef] [PubMed]
- Jara, P.; Fernández-Jiménez, R.; Ferreiro, A.; Urbieta, A.; Rabanal, M.E.; Fernández, P. Morphological, structural and luminescent characterization of Nd-doped ZnO nano- and microstructures grown by vapor-solid method. Mater. Sci. Eng. B 2024, 299, 116941. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242. [Google Scholar] [CrossRef]
- Kumar, Y.; Adelung, R. ZnO tetrapod materials for functional applications. Mater. Today 2018, 21, 631–651. [Google Scholar] [CrossRef]
- Hoang, S.; Guo, S.W.; Hahn, N.T.; Bard, A.J.; Mullins, C.B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 2012, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties and Applications; Imperial College Press: London, UK, 2004. [Google Scholar]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Mat. 2004, 16, R829. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, Y.; Kumar, H. A study of hydrothermally grown ZnO nanorod-based metal-semiconductor-metal UV detectors on glass substrates. Nanomater. Nanotechnol. 2017, 7, 1847980417702144. [Google Scholar] [CrossRef]
- Miccoli, I.; Spampinato, R.; Marzo, F.; Prete, P.; Lovergine, N. DC-magnetron sputtering of ZnO:Al films on (00.1)Al2O3 substrates from slip-casting sintered ceramic targets. Appl. Surf. Sci. 2014, 313, 418–423. [Google Scholar] [CrossRef]
- El Hichou, A.; Addou, M.; Bougrine, A.; Dounia, R.; Ebothé, J.; Troyon, M.; Amrani, M. Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis. Mater. Chem. Phys. 2004, 83, 43–47. [Google Scholar] [CrossRef]
- Park, W.I.; Yi, G.C.; Kim, M.; Pennycook, S.J. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 2002, 14, 1841–1843. [Google Scholar] [CrossRef]
- Fang, Y.; Wen, X.; Yang, S.; Pang, Q.; Ding, L.; Wang, J.; Ge, W. Hydrothermal synthesis and optical properties of ZnO nanostructured films directly grown from/on zinc substrates. J. Sol-Gel Sci. Technol. 2005, 36, 227–234. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants. Process Parameters and Morphologies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef]
- Liang, J.K.; Su, H.L.; Kuo, C.L.; Kao, S.P.; Cui, J.W.; Wu, Y.C.; Huang, J.C.A. Structural, Optical and Electrical Properties of Electrodeposited Sb-Doped ZnO Nanorod Arrays. Electrochim. Acta 2014, 125, 124–132. [Google Scholar] [CrossRef]
- Prete, P.; Lovergine, N.; Tapfer, L. Nanostructure size evolution during Au-catalysed growth by carbo-thermal evaporation of well-aligned ZnO nanowires on (100)Si. Appl. Phys. A 2007, 88, 21–26. [Google Scholar] [CrossRef]
- Yoichiro, N.; Aki, M.; Hiroko, K.; Toru, A.; Yoshinori, H.; Goro, S. Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation. Appl. Surf. Sci. 1999, 142, 233–236. [Google Scholar] [CrossRef]
- Bueno, C.; Pacio, A.; Osorio, E.; Alvarado, J.A.; Maestre, D.; Cremades, A.; Flores-Carrasco, G.; Juárez, H. Growth mechanism and optical properties of nano and microstructures of ZnO obtained by thermal oxidation of zinc powders at atmospheric pressure. Solid State Phenom. 2019, 286, 33–39. [Google Scholar] [CrossRef]
- Bueno, C.; Maestre, D.; Díaz, T.; Juárez, H.; Pacio, M.; Cremades, A.; Piqueras, J. High-yield growth of Ti doped ZnO nano- and microstructures by a vapor-solid method. J. Alloys Compd. 2017, 726, 201–208. [Google Scholar] [CrossRef]
- Maestre, D.; Haeussler, D.; Cremades, A.; Jager, W.; Piqueras, J. Complex defect structure in the core of Sn-doped In2O3 nanorods and its relationship with a dislocation-driven growth mechanism. Cryst. Growth Des. 2011, 11, 1117–1121. [Google Scholar] [CrossRef]
- Di Carlo, V.; Prete, P.; Dubrovskii, V.G.; Berdnikov, Y.; Lovergine, N. CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy. Nano Lett. 2017, 17, 4075–4082. [Google Scholar] [CrossRef]
- Kajbafvala, A.; Ghorbani, H.; Paravar, A.; Samberg, J.P.; Kajbafvala, E.; Sadrnezhaad, S.K. Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct. 2012, 51, 512–522. [Google Scholar] [CrossRef]
- Xu, X.; Xu, C.; Dai, J.; Pan, J.; Hu, J. Evolutions of defects and blue–green emissions in ZnO microwhiskers fabricated by vapor-phase transport. J. Phys. Chem. Solids 2012, 73, 858–862. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, C.; Cai, R.; Wang, Y.; Zhou, G. Spontaneous ZnO nanowire formation during oxidation of Cu-Zn alloy. J. Appl. Phys. 2013, 114, 023512. [Google Scholar] [CrossRef]
- Pavón, F.; Urbieta, A.; Fernández, P. Characterization, luminescence and optical resonant modes of Eu-Li co-doped ZnO nano- and microstructures. Appl. Sci. 2022, 12, 6948. [Google Scholar] [CrossRef]
- Huang, M.H.; Hu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116. [Google Scholar] [CrossRef]
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899. [Google Scholar] [CrossRef]
- Du, Y.; Zeng, F. Annealing effects on the cathodoluminescence properties of individual ZnO nanowire. Mater. Lett. 2011, 65, 2238–2240. [Google Scholar] [CrossRef]
- Sun, T.; Qiu, J. Fabrication of ZnO microtube arrays via vapor phase growth. Mater. Lett. 2008, 62, 1528–1531. [Google Scholar] [CrossRef]
- Fabbri, F.; Villan, M.; Catellani, A.; Calzolari, A.; Cicero, G.; Calestani, D.; Calestani, G.; Zappettini, A.; Dierre, B.; Sekiguchi, T.; et al. Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci. Rep. 2014, 4, 5158. [Google Scholar] [CrossRef]
- Gatou, M.A.; Fiorentis, E.; Lagopati, N.; Pavlatou, E.A. Photodegradation of rhodamine B and phenol using TiO2/SiO2 composite nanoparticles: A comparative study. Water 2023, 15, 2773. [Google Scholar] [CrossRef]
- Han, C.; Duan, L.; Zhao, X.; Hu, Z.; Niu, Y.; Geng, W. Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J. Alloys Compd. 2019, 770, 854–863. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Film. 2016, 605, 2–19. [Google Scholar] [CrossRef]
- Nawaz, R.; Ullah, H.; Ghanim, A.; Irfan, M.; Anjum, M.; Rahman, S.; Ullah, S.; Baki, Z.A.; Oad, V.K. Green synthesis of ZnO and black TiO2 materials and their application in photodegradation of organic pollutants. ACS Omega 2023, 8, 36076–36087. [Google Scholar] [CrossRef] [PubMed]
Sample | Zn % at. | O % at. |
---|---|---|
600 °C Air and Argon | 53.47 | 46.52 |
700 °C Air and Argon | 51.07 | 48.93 |
800 °C Air and Argon | 51.32 | 43.55 |
Upper base of the micro-tube | 64.9 | 35.1 |
Sample | Absorption AM (%) | Degradation AM (%) | Constant Reaction, k (min−1) | Total Elimination AM (%) |
---|---|---|---|---|
Nano-wires | 6.4 | 97.2 | 0.04063 | 97.4 |
Micro-tubes | 5.5 | 49.8 | 0.00745 | 52.5 |
Micro-rods | 13.5 | 94.5 | 0.03246 | 95.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, C.; Luna, A.; Flores, G.; Juárez, H.; Pacio, M.; Pérez, R.; Flores-Méndez, J.; Maestre, D.; Cortés-Maldonado, R. Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity. Crystals 2024, 14, 941. https://doi.org/10.3390/cryst14110941
Bueno C, Luna A, Flores G, Juárez H, Pacio M, Pérez R, Flores-Méndez J, Maestre D, Cortés-Maldonado R. Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity. Crystals. 2024; 14(11):941. https://doi.org/10.3390/cryst14110941
Chicago/Turabian StyleBueno, Carlos, Adan Luna, Gregorio Flores, Héctor Juárez, Mauricio Pacio, René Pérez, Javier Flores-Méndez, David Maestre, and Raúl Cortés-Maldonado. 2024. "Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity" Crystals 14, no. 11: 941. https://doi.org/10.3390/cryst14110941
APA StyleBueno, C., Luna, A., Flores, G., Juárez, H., Pacio, M., Pérez, R., Flores-Méndez, J., Maestre, D., & Cortés-Maldonado, R. (2024). Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity. Crystals, 14(11), 941. https://doi.org/10.3390/cryst14110941