Recent Progress of Floating-Zone Techniques for Bulk Single-Crystal Growth
Abstract
:1. Introduction
2. Principle of the Floating-Zone Technique
3. Floating-Zone Furnaces with Optical Lamps
3.1. Optical Lamps Equipped in the Horizontal Configurations
3.2. Optical Lamps Equipped in the Vertical Configurations
3.3. Tilting Mirrors from the Horizontal Configurations
3.4. Effective Shielding of the Irradiation
3.5. Shapes and Geometries of the Optical Lamps
4. Floating-Zone Furnaces with Laser Heating System
4.1. Development of the Laser-Heated Floating-Zone Furnaces
4.2. Modification of the Temperature Distribution Profile by Laser Emission
5. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bridgman, P.W. Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin. Proc. Am. Acad. Arts Sci. 1925, 60, 305–383. [Google Scholar] [CrossRef]
- Lau, C.N.; Xia, F.; Cao, L. Emergent Quantum Materials. MRS Bull. 2020, 45, 340–347. [Google Scholar] [CrossRef]
- Alexandradinata, A.; Armitage, N.P.; Baydin, A.; Bi, W.; Cao, Y.; Changlani, H.J.; Chertkov, E.; da Silva Neto, E.H.; Delacretaz, L.; El Baggari, I.; et al. The Future of the Correlated Electron Problem. arXiv 2020, arXiv:2010.00584. [Google Scholar]
- Steglich, F.; Aarts, J.; Bredl, C.D.; Lieke, W.; Meschede, D.; Franz, W.; Schäfer, H. Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu2Si2. Phys. Rev. Lett. 1979, 43, 1892–1896. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Miiller, K.A. Possible High Tc Superconductivity in the Ba-La-Cu-O System. Z. Phys. B Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Jérome, D.; Mazaud, A.; Ribault, M.; Bechgaard, K. Superconductivity in a Synthetic Organic Conductor (TMTSF)2PF6. J. Phys. Lett. 1980, 41, 95–98. [Google Scholar] [CrossRef]
- Tokura, Y. Correlated-Electron Physics in Transition-Metal Oxides. Phys. Today 2003, 56, 50–55. [Google Scholar] [CrossRef]
- Keimer, B.; Kivelson, S.A.; Norman, M.R.; Uchida, S.; Zaanen, J. From Quantum Matter to High-Temperature Superconductivity in Copper Oxides. Nature 2015, 518, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Moore, J.E. Three-Dimensional Topological Insulators. Annu. Rev. Condens. Matter Phys. 2011, 2, 55–78. [Google Scholar] [CrossRef]
- Ando, Y. Topological Insulator Materials. J. Phys. Soc. Jpn. 2013, 82, 102001. [Google Scholar] [CrossRef]
- Burkov, A.A. Topological Semimetals. Nat. Mater. 2016, 15, 1145–1148. [Google Scholar] [CrossRef] [PubMed]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac Semimetals in Three-Dimensional Solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef]
- Burkov, A.A. Weyl Metals. Annu. Rev. Condens. Matter Phys. 2018, 9, 359–378. [Google Scholar] [CrossRef]
- Bernevig, B.A.; Felser, C.; Beidenkopf, H. Progress and Prospects in Magnetic Topological Materials. Nature 2022, 603, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Šmejkal, L.; González-Hernández, R.; Jungwirth, T.; Sinova, J. Crystal Time-Reversal Symmetry Breaking and Spontaneous Hall Effect in Collinear Antiferromagnets. Sci. Adv. 2020, 6, eaaz8809. [Google Scholar] [CrossRef]
- Šmejkal, L.; Sinova, J.; Jungwirth, T. Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry. Phys. Rev. X 2022, 12, 031042. [Google Scholar] [CrossRef]
- Šmejkal, L.; Sinova, J.; Jungwirth, T. Emerging Research Landscape of Altermagnetism. Phys. Rev. X 2022, 12, 040501. [Google Scholar] [CrossRef]
- Mazin, I. Altermagnetism Then and Now. Physics 2024, 17, 4. [Google Scholar] [CrossRef]
- Samarth, N. Quantum Materials Discovery from a Synthesis Perspective. Nat. Mater. 2017, 16, 1068–1076. [Google Scholar] [CrossRef]
- Pfann, W.G. Principles of Zone-Melting. JOM 1952, 4, 747–753. [Google Scholar] [CrossRef]
- Schmehr, J.L.; Wilson, S.D. Active Crystal Growth Techniques for Quantum Materials. Annu. Rev. Mater. Res. 2017, 47, 153–174. [Google Scholar] [CrossRef]
- Giustino, F.; Lee, J.H.; Trier, F.; Bibes, M.; Winter, S.M.; Valentí, R.; Son, Y.-W.; Taillefer, L.; Heil, C.; Figueroa, A.I.; et al. The 2021 Quantum Materials Roadmap. J. Phys. Mater. 2021, 3, 042006. [Google Scholar] [CrossRef]
- Tokura, Y. Quantum Materials at the Crossroads of Strong Correlation and Topology. Nat. Mater. 2022, 21, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Šmejkal, L.; Mokrousov, Y.; Yan, B.; MacDonald, A.H. Topological Antiferromagnetic Spintronics. Nat. Phys. 2018, 14, 242–251. [Google Scholar] [CrossRef]
- He, Q.L.; Hughes, T.L.; Armitage, N.P.; Tokura, Y.; Wang, K.L. Topological Spintronics and Magnetoelectronics. Nat. Mater. 2022, 21, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.V.; Staub, U.; Devidas, T.R.; Kalisky, B.; Nowack, K.C.; Webb, J.L.; Andersen, U.L.; Huck, A.; Broadway, D.A.; Wagner, K.; et al. 2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science. arXiv 2024, arXiv:2401.04793. [Google Scholar] [CrossRef]
- Keck, P.H.; Golay, M.J.E. Crystallization of Silicon from a Floating Liquid Zone. Phys. Rev. 1953, 89, 1297. [Google Scholar] [CrossRef]
- Emeis, R. Tiegelfreies Ziehen von Silicium-Einkristallen. Z. Naturforsch. A 1954, 9, 67–68. [Google Scholar] [CrossRef]
- Tanaka, I.; Yamane, K.; Kojima, H. Single Crystal Growth of Superconducting La2−xSrxCuO4 by the TSFZ Method. J. Cryst. Growth 1989, 96, 711–715. [Google Scholar] [CrossRef]
- Perry, R.S.; Maeno, Y. Systematic Approach to the Growth of High-Quality Single Crystals of Sr3Ru2O7. J. Cryst. Growth 2004, 271, 134–141. [Google Scholar] [CrossRef]
- Kikugawa, N.; Balicas, L.; Peter Mackenzie, A. Physical Properties of Single-Crystalline CaRuO3 Grown by a Floating-Zone Method. J. Phys. Soc. Jpn. 2009, 78, 014701. [Google Scholar] [CrossRef]
- Kikugawa, N.; Winfried Rost, A.; William Hicks, C.; John Schofield, A.; Peter Mackenzie, A. Ca3Ru2O7: Density Wave Formation and Quantum Oscillations in the Hall Resistivity. J. Phys. Soc. Jpn. 2010, 79, 024704. [Google Scholar] [CrossRef]
- Koohpayeh, S.; Wen, J.; Trump, B.; Broholm, C.; McQueen, T. Synthesis, Floating Zone Crystal Growth and Characterization of the Quantum Spin Ice Pr2Zr2O7 Pyrochlore. J. Cryst. Growth 2014, 402, 291–298. [Google Scholar] [CrossRef]
- Watauchi, S.; Matsuya, K.; Nagao, M.; Tanaka, I.; Kurosawa, S.; Yokota, Y.; Yoshikawa, A. Control of the Solid-Liquid Interface during Growth of a Ce-Doped Gd2Si2O7 Crystal by the Traveling Solvent Floating Zone Method. J. Cryst. Growth 2017, 468, 465–468. [Google Scholar] [CrossRef]
- Nakamura, S.; Maljuk, A.; Maruyama, Y.; Nagao, M.; Watauchi, S.; Hayashi, T.; Anzai, Y.; Furukawa, Y.; Ling, C.D.; Deng, G.; et al. Growth of LiCoO2 Single Crystals by the TSFZ Method. Cryst. Growth Des. 2019, 19, 415–420. [Google Scholar] [CrossRef]
- Bobowski, J.S.; Kikugawa, N.; Miyoshi, T.; Suwa, H.; Xu, H.-S.; Yonezawa, S.; Sokolov, D.A.; Mackenzie, A.P.; Maeno, Y. Improved Single-Crystal Growth of Sr2RuO4. Condens. Matter 2019, 4, 6. [Google Scholar] [CrossRef]
- Balbashov, A.M. Contemporary Apparatus for Single Crystals Growth of Oxide Compounds and Metals by Optical Floating Zone (FZ). Crystals 2019, 9, 487. [Google Scholar] [CrossRef]
- Berry, T.; Pressley, L.A.; Phelan, W.A.; Tran, T.T.; McQueen, T.M. Laser-Enhanced Single Crystal Growth of Non-Symmorphic Materials: Applications to an Eight-Fold Fermion Candidate. Chem. Mater. 2020, 32, 5827–5834. [Google Scholar] [CrossRef]
- Pressley, L.A.; Torrejon, A.; Phelan, W.A.; McQueen, T.M. Discovery and Single Crystal Growth of High Entropy Pyrochlores. Inorg. Chem. 2020, 59, 17251–17258. [Google Scholar] [CrossRef]
- Tomioka, Y.; Ito, T.; Maruyama, E.; Kimura, S.; Shindo, I. Magnetic and Electronic Properties of Single Crystals of Perovskite Nickelate Oxide LaNiO3 Prepared by the Laser Diode Floating Zone Method. J. Phys. Soc. Jpn. 2021, 90, 034704. [Google Scholar] [CrossRef]
- Berry, T.; Bernier, S.; Auffermann, G.; McQueen, T.M.; Adam Phelan, W. Laser Floating Zone Growth of SrVO3 Single Crystals. J. Cryst. Growth 2022, 583, 126518. [Google Scholar] [CrossRef]
- Pressley, L.A.; Sinha, M.; Vivanco, H.K.; Chamorro, J.; Das, S.; Ramesh, R.; McQueen, T.M. Optimization of PbTiO3 Single Crystals with Flux and Laser Floating Zone Method. Cryst. Growth Des. 2022, 22, 5629–5638. [Google Scholar] [CrossRef]
- Khandaker, M.R.; Maruyama, Y.; Nagao, M.; Watauchi, S.; Munakata, H.; Kanamura, K.; Tanaka, I. TSFZ Growth and Anisotropic Ionic Conductivity of Mg-Doped LiCoO2 Single Crystals. Cryst. Growth Des. 2023, 23, 5699–5704. [Google Scholar] [CrossRef]
- Zajíc, F.; Klejch, M.; Eliáš, A.; Klicpera, M.; Beitlerová, A.; Nikl, M.; Pospíšil, J. Nd:YAG Single Crystals Grown by the Floating Zone Method in a Laser Furnace. Cryst. Growth Des. 2023, 23, 2609–2618. [Google Scholar] [CrossRef] [PubMed]
- Amirkhizi, P.; Madre, M.A.; Dura, O.J.; Torres, M.A.; Sotelo, A.; Kovalevsky, A.; Rasekh, S. Effect of Laser Wavelength on the Thermoelectric Properties of Bi1.6Pb0.4Sr2Co2O8 Textured Ceramics Processed by LFZ. Ceram. Int. 2024, 50, 17924–17929. [Google Scholar] [CrossRef]
- Kaneko, Y.; Koda, T. New Developments in IIa–VIb (Alkaline-Earth Chalcogenide) Binary Semiconductors. J. Cryst. Growth 1988, 86, 72–78. [Google Scholar] [CrossRef]
- Koohpayeh, S.M. Single Crystal Growth by the Traveling Solvent Technique: A Review. Prog. Cryst. Growth Charact. Mater. 2016, 62, 22–34. [Google Scholar] [CrossRef]
- Amigó, M.L.; Maljuk, A.; Manna, K.; Stahl, Q.; Felser, C.; Hess, C.; Wolter, A.U.B.; Geck, J.; Seiro, S.; Büchner, B. Laser-Assisted Floating Zone Growth of BaFe2S3 Large-Sized Ferromagnetic-Impurity-Free Single Crystals. Crystals 2021, 11, 758. [Google Scholar] [CrossRef]
- Kaneko, Y.; Morimoto, K.; Koda, T. Optical Properties of Alkaline-Earth Chalcogenides. I. Single Crystal Growth and Infrared Reflection Spectra Due to Optical Phonons. J. Phys. Soc. Jpn. 1982, 51, 2247–2254. [Google Scholar] [CrossRef]
- Souptel, D.; Behr, G.; Ivanenko, L.; Vinzelberg, H.; Schumann, J. Floating Zone Growth and Characterization of Semiconducting Ru2Si3 Single Crystals. J. Cryst. Growth 2002, 244, 296–304. [Google Scholar] [CrossRef]
- Souptel, D.; Leithe-Jasper, A.; Löser, W.; Schnelle, W.; Borrmann, H.; Behr, G. Floating Zone Growth and Characterization of Pr5Si3 Single Crystals. J. Cryst. Growth 2004, 273, 311–319. [Google Scholar] [CrossRef]
- Behr, G.; Löser, W.; Souptel, D.; Fuchs, G.; Mazilu, I.; Cao, C.; Köhler, A.; Schultz, L.; Büchner, B. Crystal Growth of Rare Earth-Transition Metal Borocarbides and Silicides. J. Cryst. Growth 2008, 310, 2268–2276. [Google Scholar] [CrossRef]
- Cao, C.; Blum, C.G.F.; Löser, W. Floating Zone Crystal Growth of Lu2PdSi3 Silicide. J. Cryst. Growth 2014, 401, 593–595. [Google Scholar] [CrossRef]
- Huber, N.; Leeb, V.; Bauer, A.; Benka, G.; Knolle, J.; Pfleiderer, C.; Wilde, M.A. Quantum Oscillations of the Quasiparticle Lifetime in a Metal. Nature 2023, 621, 276–281. [Google Scholar] [CrossRef]
- Huber, N.; Mishra, S.; Sheikin, I.; Alpin, K.; Schnyder, A.P.; Benka, G.; Bauer, A.; Pfleiderer, C.; Wilde, M.A. Fermi Surface of the Chiral Topological Semimetal CoSi. Phys. Rev. B 2024, 109, 205115. [Google Scholar] [CrossRef]
- Iga, F.; Shimizu, N.; Takabatake, T. Single Crystal Growth and Physical Properties of Kondo Insulator YbB12. J. Magn. Magn. Mater. 1998, 177, 337–338. [Google Scholar] [CrossRef]
- Otani, S.; Korsukova, M.M.; Mitsuhashi, T. Preparation of HfB2 and ZrB2 Single Crystals by the Floating-Zone Method. J. Cryst. Growth 1998, 186, 582–586. [Google Scholar] [CrossRef]
- Otani, S.; Ohsawa, T. Floating Zone Growth and High-Temperature Hardness of CrB2 Single Crystals. J. Cryst. Growth 1999, 200, 472–475. [Google Scholar] [CrossRef]
- Otani, S.; Korsukova, M.M.; Mitsuhashi, T.; Kieda, N. Floating Zone Growth and High-Temperature Hardness of YB4 and YB6 Single Crystals. J. Cryst. Growth 2000, 217, 378–382. [Google Scholar] [CrossRef]
- Tanaka, T.; Sato, A. Floating Zone Crystal Growth and Structure Analysis of a Novel ScB19 Family Compound, ScB19+xSiy. J. Solid State Chem. 2001, 160, 394–400. [Google Scholar] [CrossRef]
- Otani, S.; Segawa, H.; Ohashi, N. Floating Zone Growth of Cerium Tetra-Boride Crystals. J. Ceram. Soc. Jpn. 2014, 122, 192–194. [Google Scholar] [CrossRef]
- Sussardi, A.; Tanaka, T.; Khan, A.U.; Schlapbach, L.; Mori, T. Enhanced Thermoelectric Properties of Samarium Boride. J. Mater. 2015, 1, 196–204. [Google Scholar] [CrossRef]
- Brunt, D.; Ciomaga Hatnean, M.; Petrenko, O.A.; Lees, M.R.; Balakrishnan, G. Single-Crystal Growth of Metallic Rare-Earth Tetraborides by the Floating-Zone Technique. Crystals 2019, 9, 211. [Google Scholar] [CrossRef]
- Precht, W.; Hollox, G.E. A Floating Zone Technique for the Growth of Carbide Single Crystals. J. Cryst. Growth 1968, 3–4, 818–823. [Google Scholar] [CrossRef]
- Otani, S.; Tanaka, T.; Ishizawa, Y. Preparation of NbCx Single Crystals by a Floating Zone Technique. J. Cryst. Growth 1983, 62, 211–218. [Google Scholar] [CrossRef]
- Otani, S.; Honma, S.; Tanaka, T.; Ishizawa, Y. Preparation of TiCx Single Crystals with Maximum Carbon Content by a Floating Zone Technique. J. Cryst. Growth 1983, 61, 1–7. [Google Scholar] [CrossRef]
- Hou, Y.; Otani, S.; Tanaka, T.; Ishizawa, Y. Preparation of Vanadium Carbide Single Crystals by a Floating Zone Technique. J. Cryst. Growth 1984, 68, 733–740. [Google Scholar] [CrossRef]
- Tanaka, T.; Otani, S.; Ishizawa, Y. Floating-Zone Crystal Growth of WC. J. Mater. Sci. 1988, 23, 665–669. [Google Scholar] [CrossRef]
- Takeya, H.; Hirano, T.; Kadowaki, K. Single Crystal Growth of Quaternary Superconductor YNi2B2C by a Floating Zone Method. Phys. C Supercond. 1996, 256, 220–226. [Google Scholar] [CrossRef]
- Straker, M.; Chauhan, A.; Sinha, M.; Phelan, W.A.; Chandrashekhar, M.V.S.; Hemker, K.J.; Marvel, C.; Spencer, M. Growth of High Purity Zone-Refined Boron Carbide Single Crystals by Laser Diode Floating Zone Method. J. Cryst. Growth 2020, 543, 125700. [Google Scholar] [CrossRef]
- Hirano, T. Improvement of Room Temperature Ductility of Stoichiometric Ni3Al by Unidirectional Solidification. Acta Metall. Mater. 1990, 38, 2667–2671. [Google Scholar] [CrossRef]
- Hirano, T.; Mawari, T. Unidirectional Solidification of Ni3Al by a Floating Zone Method. Acta Metall. Mater. 1993, 41, 1783–1789. [Google Scholar] [CrossRef]
- Subramanian, R.; Higuchi, M.; Dieckman, R. Growth of Nickel Aluminate Single Crystals by the Floating Zone Method. J. Cryst. Growth 1994, 143, 311–316. [Google Scholar] [CrossRef]
- Xu, Y.; Löser, W.; Behr, G.; Frontzek, M.; Tang, F.; Büchner, B.; Liu, L. Crystal Growth of the Pr2PdSi3 Intermetallic Compound. J. Cryst. Growth 2010, 312, 1992–1996. [Google Scholar] [CrossRef]
- Cao, C.; Löser, W.; Behr, G.; Klingeler, R.; Leps, N.; Vinzelberg, H.; Büchner, B. Single Crystal Growth of Eu2CuSi3 Intermetallic Compound by the Floating-Zone Method. J. Cryst. Growth 2011, 318, 1009–1012. [Google Scholar] [CrossRef]
- Cao, C.; Deppe, M.; Behr, G.; Löser, W.; Wizent, N.; Kataeva, O.; Büchner, B. Single Crystal Growth of the CeCu2Si2 Intermetallic Compound by a Vertical Floating Zone Method. Cryst. Growth Des. 2011, 11, 431–435. [Google Scholar] [CrossRef]
- Neubauer, A.; Jonietz, F.; Meven, M.; Georgii, R.; Brandl, G.; Behr, G.; Böni, P.; Pfleiderer, C. Optical Floating Zone Growth of High-Quality Cu2MnAl Single Crystals. Nucl. Instrum. Methods Phys. Res. A 2012, 688, 66–74. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, L.; Löser, W.; Frontzek, M. Vertical Floating Zone Crystal Growth of R2PdSi3 Intermetallic Compounds (R = Pr and Nd). Adv. Mat. Res. 2013, 774–776, 720–724. [Google Scholar]
- Hermann, R.; Gerbeth, G.; Priede, J. Magnetic Field Controlled Floating-Zone Single Crystal Growth of Intermetallic Compounds. Eur. Phys. J. Spec. Top. 2013, 220, 227–241. [Google Scholar] [CrossRef]
- Avers, K.E.; Nguyen, M.D.; Scott, J.W.; Zimmerman, A.M.; Thomas, S.M.; Rosa, P.F.S.; Bauer, E.D.; Thompson, J.D.; Halperin, W.P. Electron-Beam Floating-Zone Refined UCoGe. Phys. Rev. Mater. 2021, 5, 054803. [Google Scholar] [CrossRef]
- Koohpayeh, S.M.; Fort, D.; Abell, J.S. The Optical Floating Zone Technique: A Review of Experimental Procedures with Special Reference to Oxides. Prog. Cryst. Growth Charact. Mater. 2008, 54, 121–137. [Google Scholar] [CrossRef]
- Dabkowska, H.A.; Dabkowski, A.B. Crystal Growth of Oxides by Optical Floating Zone Technique. In Springer Handbook of Crystal Growth; Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 367–391. ISBN 9783540747611. [Google Scholar]
- Floating Zone Growth of Oxides and Metallic Alloys. In Handbook of Crystal Growth, 2nd ed.; Rudolph, P. (Ed.) Elsevier: Boston, MA, USA, 2015; pp. 281–329. ISBN 9780444633033. [Google Scholar]
- Gille, P.; Grin, Y. Crystal Growth of Intermetallics; Gille, P., Grin, Y., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2019; ISBN 9783110495843. [Google Scholar]
- Rey-García, F.; Ibáñez, R.; Angurel, L.A.; Costa, F.M.; de la Fuente, G.F. Laser Floating Zone Growth: Overview, Singular Materials, Broad Applications, and Future Perspectives. Crystals 2020, 11, 38. [Google Scholar] [CrossRef]
- Pistawala, N.; Rout, D.; Saurabh, K.; Bag, R.; Karmakar, K.; Harnagea, L.; Singh, S. Crystal Growth of Quantum Materials: A Review of Selective Materials and Techniques. Bull. Mater. Sci. 2021, 45, 10. [Google Scholar] [CrossRef]
- Neubauer, A.; Boeuf, J.; Bauer, A.; Russ, B.; Löhneysen, H.v.; Pfleiderer, C. Ultra-High Vacuum Compatible Image Furnace. Rev. Sci. Instrum. 2011, 82, 013902. [Google Scholar] [CrossRef] [PubMed]
- Schmehr, J.L.; Aling, M.; Zoghlin, E.; Wilson, S.D. High-Pressure Laser Floating Zone Furnace. Rev. Sci. Instrum. 2019, 90, 043906. [Google Scholar] [CrossRef]
- Nagai, I.; Shirakawa, N.; Ikeda, S.-I.; Iwasaki, R.; Nishimura, H.; Kosaka, M. Highest Conductivity Oxide SrMoO3 Grown by a Floating-Zone Method under Ultralow Oxygen Partial Pressure. Appl. Phys. Lett. 2005, 87, 024105. [Google Scholar] [CrossRef]
- De La Rue, R.E.; Halden, F.A. Arc-Image Furnace for Growth of Single Crystals. Rev. Sci. Instrum. 1960, 31, 35–38. [Google Scholar] [CrossRef]
- Souptel, D.; Löser, W.; Behr, G. Vertical Optical Floating Zone Furnace: Principles of Irradiation Profile Formation. J. Cryst. Growth 2007, 300, 538–550. [Google Scholar] [CrossRef]
- Bednorz, J.; Arend, H. A 1 KW Mirror Furnace for Growth of Refractory Oxide Single Crystals by a Floating-Zone Technique. J. Cryst. Growth 1984, 67, 660–662. [Google Scholar] [CrossRef]
- Dold, P.; Cröll, A.; Benz, K.W. Floating-Zone Growth of Silicon in Magnetic Fields I. Weak Static Axial Fields. J. Cryst. Growth 1998, 183, 545553. [Google Scholar] [CrossRef]
- Sarker, A.R.; Watauchi, S.; Nagao, M.; Watanabe, T.; Shindo, I.; Tanaka, I. Effects of Tilting Mirrors on the Solid–Liquid Interface during Floating Zone Growth Using Tilting-Mirror-Type Infrared-Heating Image Furnace. J. Cryst. Growth 2010, 312, 2008–2011. [Google Scholar] [CrossRef]
- Higuchi, M.; Hosokawa, T.; Kimura, S. Growth of Rutile Single Crystals by Floating Zone Method. J. Cryst. Growth 1991, 112, 354–358. [Google Scholar] [CrossRef]
- Higuchi, M.; Kodaira, K. Solid-Liquid Interface Shapes in the Floating Zone Growth of Rutile Single Crystals. Mater. Res. Bull. 1994, 29, 545–550. [Google Scholar] [CrossRef]
- Sarker, M.A.R.; Watauchi, S.; Nagao, M.; Watanabe, T.; Shindo, I.; Tanaka, I. Reduced Etch Pit Density of Rutile (TiO2) Single Crystals by Growth Using a Tilting-Mirror-Type Infrared Heating Image Furnace. Cryst. Growth Des. 2010, 10, 3929–3930. [Google Scholar] [CrossRef]
- Sarker, A.R.; Watauchi, S.; Nagao, M.; Watanabe, T.; Shindo, I.; Tanaka, I. Effects of the Diameter of Rutile (TiO2) Single Crystals Grown Using Tilting-Mirror-Type Infrared Heating Image Furnace on Solid–Liquid Interface and Etch Pit Density. J. Cryst. Growth 2011, 317, 135–138. [Google Scholar] [CrossRef]
- Sarker, A.R. Growth of Large Size Lithium Niobate Single Crystals of High Quality by Tilting-Mirror-Type Floating Zone Method. Mater. Res. 2016, 19, 505–512. [Google Scholar] [CrossRef]
- Hossain, M.M.; Watauchi, S.; Nagao, M.; Tanaka, I. Effects of Tilt Angle of Mirror-Lamp System on Shape of Solid-Liquid Interface of Silicon Melt during Floating Zone Growth Using Infrared Convergent Heating. J. Cryst. Growth 2016, 433, 24–30. [Google Scholar] [CrossRef]
- Parvin, R.; Maruyama, Y.; Nagao, M.; Watauchi, S.; Tanaka, I. Effects of the Mirror Tilt Angle on the Growth of LiCoO2 Single Crystals by the Traveling Solvent Floating Zone (TSFZ) Technique Using a Tilting-Mirror-Type Image Furnace. Cryst. Growth Des. 2020, 20, 3413–3416. [Google Scholar] [CrossRef]
- Noda, N.; Watauchi, S.; Maruyama, Y.; Nagao, M.; Kakimoto, K.; Tanaka, I. Investigating the Combined Effects of Mirror Tilting and Position on Rutile Crystal Growth Using the Infrared Convergent-Heating Floating Zone Method. J. Cryst. Growth 2021, 571, 126257. [Google Scholar] [CrossRef]
- Noda, N.; Watauchi, S.; Maruyama, Y.; Nagao, M.; Hossain, M.M.; Yokota, Y.; Kurosawa, S.; Yoshikawa, A.; Kakimoto, K.; Tanaka, I. Effects of Lamp Filament Alignment, Mirror–Lamp System Position, and Downward Tilt during Growth of Lanthanum- and Cerium-Doped Gadolinium Pyrosilicate Crystal Using Optical Floating Zone Method. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Katsui, H.; Shiga, K.; Tu, R.; Goto, T. Crystal Growth of BaTi2O5 by the Floating Zone Method. J. Cryst. Growth 2013, 384, 66–70. [Google Scholar] [CrossRef]
- Kikugawa, N.; Baumbach, R.; Brooks, J.S.; Terashima, T.; Uji, S.; Maeno, Y. Single-Crystal Growth of a Perovskite Ruthenate SrRuO3 by the Floating-Zone Method. Cryst. Growth Des. 2015, 15, 5573–5577. [Google Scholar] [CrossRef]
- Lee, C.-H.; Kaneko, N.; Hosoya, S.; Kurahashi, K.; Wakimoto, S.; Yamada, K.; Endoh, Y. Growth of Large Single Crystals Using the Improved Lamp-Image Floating-Zone Furnace: Application To. Supercond. Sci. Technol. 1998, 11, 891. [Google Scholar] [CrossRef]
- Hossain, M.M.; Watauchi, S.; Nagao, M.; Tanaka, I. Effects of Growth Parameters on Silicon Molten Zone Formed by Infrared Convergent-Heating Floating Zone Method. J. Cryst. Growth 2017, 459, 105–111. [Google Scholar] [CrossRef]
- Maeno, Y.; Rice, T.M.; Sigrist, M. The Intriguing Superconductivity of Strontium Ruthenate. Phys. Today 2001, 54, 42–47. [Google Scholar] [CrossRef]
- Kikugawa, N.; Sokolov, D.A.; Nagasawa, T.; Mackenzie, A.P. Single-Crystal Growth of Sr2RuO4 by the Floating-Zone Method Using an Infrared Image Furnace with Improved Halogen Lamps. Crystals 2021, 11, 392. [Google Scholar] [CrossRef]
- Mao, Z.Q.; Maeno, Y.; Fukazawa, H. Crystal Growth of Sr2RuO4. Mater. Res. Bull. 2000, 35, 1813–1824. [Google Scholar] [CrossRef]
- Ikeda, S.I.; Azuma, U.; Shirakawa, N.; Nishihara, Y.; Maeno, Y. Bulk Single-Crystal Growth of Strontium Ruthenates by a Floating-Zone Method. J. Cryst. Growth 2002, 237–239, 787–791. [Google Scholar] [CrossRef]
- Ito, T.; Ushiyama, T.; Yanagisawa, Y.; Tomioka, Y.; Shindo, I.; Yanase, A. Laser-Diode-Heated Floating Zone (LDFZ) Method Appropriate to Crystal Growth of Incongruently Melting Materials. J. Cryst. Growth 2013, 363, 264–269. [Google Scholar] [CrossRef]
- Kaneko, Y.; Tokura, Y. Floating Zone Furnace Equipped with a High Power Laser of 1 kW Composed of Five Smart Beams. J. Cryst. Growth 2020, 533, 125435. [Google Scholar] [CrossRef]
- Geho, M.; Sekijima, T.; Fujii, T. Growth of Terbium Aluminum Garnet (Tb3Al5O12; TAG) Single Crystals by the Hybrid Laser Floating Zone Machine. J. Cryst. Growth 2004, 267, 188–193. [Google Scholar] [CrossRef]
- Ito, T.; Tomioka, Y.; Rackerseder, F.; Traub, M.; Hoffmann, D. Growth of β-Ga2O3 Crystal with a Diameter of 30 mm by Laser-Diode-Heated Floating Zone (LDFZ) Method. J. Cryst. Growth 2024, 634, 127673. [Google Scholar] [CrossRef]
- Hatnean, V.C.C.; Pui, A.; Simonov, A.; Hatnean, M.C. Crystal Growth of the RSiO Compounds (R = Dy, Ho, and Er) by the Floating Zone Method Using a Laser-Diode-Heated Furnace. Crystals 2023, 13, 1687. [Google Scholar] [CrossRef]
- Kikugawa, N.; Terashima, T.; Kato, T.; Hayashi, M.; Yamaguchi, H.; Uji, S. Bulk Physical Properties of a Magnetic Weyl Semimetal Candidate NdAlGe Grown by a Laser Floating-Zone Method. Inorganics 2023, 11, 20. [Google Scholar] [CrossRef]
- Kikugawa, N.; Kato, T.; Hayashi, M.; Yamaguchi, H. Single-Crystal Growth of a Cubic Laves-Phase Ferromagnet HoAl2 by a Laser Floating-Zone Method. Crystals 2023, 13, 760. [Google Scholar] [CrossRef]
Technique | Section | Improvement | References |
Optical lamp with vertical configuration | 3.2 | Homogeneous liquid | [37,52,91,92,93] |
Tilted mirror | 3.3 | Temperature gradient | [94,97,98,99,100,101,102,103] |
Irradiation shielding | 3.4 | Temperature gradient | [104,105] |
Lamp shape and geometries | 3.5 | Temperature gradient | [106,107,109] |
Laser heating | 4.1 | Temperature gradient and homogeneous liquid | [112] |
Laser heating with modified temperature distribution | 4.2 | “Milder” temperature gradient and homogeneous liquid | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikugawa, N. Recent Progress of Floating-Zone Techniques for Bulk Single-Crystal Growth. Crystals 2024, 14, 552. https://doi.org/10.3390/cryst14060552
Kikugawa N. Recent Progress of Floating-Zone Techniques for Bulk Single-Crystal Growth. Crystals. 2024; 14(6):552. https://doi.org/10.3390/cryst14060552
Chicago/Turabian StyleKikugawa, Naoki. 2024. "Recent Progress of Floating-Zone Techniques for Bulk Single-Crystal Growth" Crystals 14, no. 6: 552. https://doi.org/10.3390/cryst14060552
APA StyleKikugawa, N. (2024). Recent Progress of Floating-Zone Techniques for Bulk Single-Crystal Growth. Crystals, 14(6), 552. https://doi.org/10.3390/cryst14060552