Effects of Ag on High-Temperature Creep Behaviors of Peak-Aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of Ageing on Mechanical Properties of Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) Alloy
3.2. Effects of Ag on Tensile Creep Performance of Peak-Aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag)
3.3. Constitutive Relational Model of Alloy Creep
3.4. Alloy Creep Life Equation and Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sukumaran, K.; Ravikumar, K.K.; Pillai, S.G.K.; Rajan, T.P.D.; Ravi, M.; Pillai, R.M.; Pai, B.C. Studies on squeeze casting of Al 2124 alloy and 2124-10% SiCp metal matrix composite. Mater. Sci. Eng. A 2008, 490, 235–241. [Google Scholar] [CrossRef]
- Raju, P.N.; Rao, K.S.; Reddy, G.M.; Kamaraj, M.; Rao, K.P. Microstructure and high temperature stability of age hardenable AA2219 aluminium alloy modified by Sc, Mg and Zr additions. Mater. Sci. Eng. A 2007, 464, 192–201. [Google Scholar] [CrossRef]
- Wang, J.; Yi, D.; Su, X.; Yin, F. Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618. Mater. Charact. 2008, 59, 965–968. [Google Scholar] [CrossRef]
- Yu, K.; Li, W.; Li, S.; Zhao, J. Mechanical properties and microstructure of aluminum alloy 2618 with Al3 (Sc, Zr) phases. Mater. Sci. Eng. A 2004, 368, 88–93. [Google Scholar] [CrossRef]
- Villars, P. Handbook of Ternary Alloy Phase Diagrams; ASM International: Detroit, MI, USA, 1995; Volume 7, pp. 8754–8755. [Google Scholar]
- Chang, C.H.; Lee, S.L.; Lin, J.C.; Yeh, M.S.; Jeng, R.R. Effect of Ag content and heat treatment on the stress corrosion cracking of Al–4.6 Cu–0.3 Mg alloy. Mater. Chem. Phys. 2005, 91, 454–462. [Google Scholar] [CrossRef]
- Xiao, D.H.; Wang, J.N.; Ding, D.Y.; Chen, S.P. Effect of Cu content on the mechanical properties of an Al–Cu–Mg–Ag alloy. J. Alloy. Compd. 2002, 343, 77–81. [Google Scholar] [CrossRef]
- Kerry, S.; Scott, V.D. Structure and orientation relationship of precipitates formed in Al-Cu-Mg-Ag alloys. Met. Sci. 1984, 18, 289–294. [Google Scholar] [CrossRef]
- Scott, V.D.; Kerry, S.; Trumper, R.L. Nucleation and growth of precipitates in Al–Cu–Mg–Ag alloys. Mater. Sci. Technol. 1987, 3, 827–835. [Google Scholar] [CrossRef]
- Rainforth, W.M.; Rylands, L.M.; Jones, H. Nano-beam analysis of {Omega} precipitates in a Al-Cu-Mg-Ag alloy. Scr. Mater. 1996, 35, 261–265. [Google Scholar] [CrossRef]
- Auld, J.H.; Cousland, S.M. On the structure of the M’phase in Al–Zn–Mg alloys. J. Appl. Crystallogr. 1985, 18, 47–48. [Google Scholar] [CrossRef]
- Sano, N.; Hono, K.; Sakurai, T.; Hirano, K. Atom-probe analysis of Ω and θ′ phases in an Al-Cu-Mg-Ag alloy. Scr. Metall. Et Mater. 1991, 25, 491–496. [Google Scholar] [CrossRef]
- Hutchinson, C.R.; Fan, X.; Pennycook, S.J.; Shiflet, G.J. On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag alloys. Acta Mater. 2001, 49, 2827–2841. [Google Scholar] [CrossRef]
- Bakavos, D.; Prangnell, P.B.; Bes, B.; Eberl, F. The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu: Mg ratio during ageing to a T8 temper. Mater. Sci. Eng. A 2008, 491, 214–223. [Google Scholar] [CrossRef]
- Reddy, A.S. Fatigue and creep deformed microstructures of aged alloys based on Al–4% Cu–0.3% Mg. Mater. Des. 2008, 29, 763–768. [Google Scholar] [CrossRef]
- Lumley, R.N.; Morton, A.J.; Polmear, I.J. Enhanced creep performance in an Al–Cu–Mg–Ag alloy through underageing. Acta Mater. 2002, 50, 3597–3608. [Google Scholar] [CrossRef]
- Liu, M.T.; Tian, Y.; Wang, Y.; Wang, K.L.; Zhang, K.M.; Lu, S.Q. Critical Conditions for Dynamic Recrystallization of S280 Ultra-High-Strength Stainless Steel Based on Work Hardening Rate. Metals 2022, 12, 1122. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jiang, Y.Q.; Xia, Y.C.; Zhang, X.C.; Zhou, H.M.; Deng, J. Effects of creep-aging processing on the corrosion resistance and mechanical properties of an Al–Cu–Mg alloy. Mater. Sci. Eng. A 2014, 605, 192–202. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C. Creep resistance of cast and aged Al–0.1 Zr and Al–0.1 Zr–0.1 Ti (at.%) alloys at 300–400 °C. Scr. Mater. 2008, 59, 387–390. [Google Scholar] [CrossRef]
- Xu, Y.; Zhan, L.; Xu, L.; Huang, M. Experimental research on creep aging behavior of Al-Cu-Mg alloy with tensile and compressive stresses. Mater. Sci. Eng. A 2017, 682, 54–62. [Google Scholar] [CrossRef]
- Xu, F.S.; Zhang, J.; Deng, Y.L.; Zhang, X.M. Precipitation orientation effect of 2124 aluminum alloy in creep aging. Trans. Nonferrous Met. Soc. China 2014, 24, 2067–2071. [Google Scholar] [CrossRef]
- Zhan, L.H.; Li, Y.G.; Huang, M.H. Effects of process parameters on mechanical properties and microstructures of creep aged 2124 aluminum alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 2232–2238. [Google Scholar] [CrossRef]
- Farkoosh, A.R.; Pekguleryuz, M. The effects of manganese on the Τ-phase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Mater. Sci. Eng. A 2013, 582, 248–256. [Google Scholar] [CrossRef]
- Erdeniz, D.; Nasim, W.; Malik, J.; Yost, A.R.; Park, S.; De Luca, A.; Dunand, D.C. Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al-Er-Sc-Zr-Si alloys. Acta Mater. 2017, 124, 501–512. [Google Scholar] [CrossRef]
- Song, Y.; Pan, Q.; Cao, S.; Wang, Y.; Li, C. Effects of Ag Content on Microstructures and Properties of Al-Cu-Mg Alloy. J. Aeronaut. Mater. 2013, 33, 7–13. [Google Scholar]
- Ringer, S.P.; Hono, K.; Polmear, I.J.; Sakurai, T. Nucleation of precipitates in aged AlCuMg (Ag) alloys with high Cu: Mg ratios. Acta Mater. 1996, 44, 1883–1898. [Google Scholar] [CrossRef]
- Gazizov, M.; Kaibyshev, R. High cyclic fatigue performance of Al–Cu–Mg–Ag alloy under T6 and T840 conditions. Trans. Nonferrous Met. Soc. China 2017, 27, 1215–1223. [Google Scholar] [CrossRef]
- Li, J.; An, Z.; Hage, F.S.; Wang, H.; Xie, P.; Jin, S.; Sha, G. Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy. Mater. Sci. Eng. A 2019, 760, 366–376. [Google Scholar] [CrossRef]
- Yin, X.; Zhan, L.; Zhan, J. Establishment of steady creep constitutive equation of 2219 aluminum alloy. Chin. J. Nonferrous Met. 2014, 24, 7. [Google Scholar]
- Monkman, F.C. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. ASTM 1956, 56, 593–620. [Google Scholar]
- Liu, C.; Wang, X.; Zhou, G.; Li, F.; Zhang, S.; Zhang, H.; Liu, H. Dislocation-controlled low-temperature superplastic deformation of Ti-6Al-4V alloy. Front. Mater. 2021, 7, 606092. [Google Scholar] [CrossRef]
- Coble, R.L. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 1963, 34, 1679–1682. [Google Scholar] [CrossRef]
- Lüthy, H.; White, R.A.; Sherby, O.D. Grain boundary sliding and deformation mechanism maps. Mater. Sci. Eng. 1979, 39, 211–216. [Google Scholar] [CrossRef]
- Ruano, O.A.; Miller, A.K.; Sherby, O.D. The influence of pipe diffusion on the creep of fine-grained materials. Mater. Sci. Eng. 1981, 51, 9–16. [Google Scholar] [CrossRef]
- Harper, J.; Dorn, J.E. Viscous creep of aluminum near its melting temperature. Acta Metall. 1957, 5, 654–665. [Google Scholar] [CrossRef]
- Robinson, S.L.; Sherby, O.D. Mechanical behavior of polycrystalline tungsten at elevated temperature. Acta Metall. 1969, 17, 109–125. [Google Scholar] [CrossRef]
- Vaidya, M.; Pradeep, K.G.; Murty, B.S.; Wilde, G.; Divinski, S.V. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 2018, 146, 211–224. [Google Scholar] [CrossRef]
- Fuentes-Samaniego, R.; Nix, W.D. Appropriate diffusion coefficients for describing creep processes in solid solution alloys. Scr. Metall. 1981, 15, 15–20. [Google Scholar] [CrossRef]
- Hasaka, M.; Morimura, T.; Uchiyama, Y.; Kondo, S.; Furuse, T.; Watanabe, T.; Hisatsune, K. Diffusion of copper, aluminum and boron in nickel. Scr. Metall. Mater. USA 1993, 29, 959–962. [Google Scholar] [CrossRef]
Alloy Composition, wt.% | Heat Treatment Condition | Ag or Mg Detected Inside Ω | Ag or Mg Detected at Ω/Matrix Interface |
---|---|---|---|
A1-4Cu-0.3Mg-0.4Ag | 200 °C, 2 h, 10 h | (Ag) | (Ag) |
A1-6Cu-0.45Mg-0.5Ag-0.5Mn-0.14Zr | Air cool from 500 °C | No | Ag, (Mg) |
A1-4Cu-0.3Mg-0.4Ag | 170 °C, 24 h | Mg, Ag | No evidence of pref. Seg |
A1-4Cu-0.3Mg-0.4Ag | 170 °C, 24 h | Mg, Ag | No evidence of pref. Seg |
A1-6Cu-0.45Mg-0.5Ag-0.5Mn-0.14Zr | 190 °C, 8 h | No | Ag, Mg |
A1-4.3Cu-0.3Mg-0.8Ag | 190 °C, 2 h, 8 h | No | Ag, Mg |
A1-4Cu-0.5Mg-0.45Ag | 250 °C, 6 min | Mg | Ag, Mg |
A1-3.9Cu-0.3Mg-0.4Ag | 200 °C, 1000 h | No | Ag, Mg |
A1-4.3Cu-0.3Mg-0.8Ag | 180 °C, 2 h, 10 h | No | Ag, Mg |
Alloys | Cu | Mg | Zr | Sc | Ag | Al |
---|---|---|---|---|---|---|
Al-Cu-Mg-Sc-Zr | 5 | 0.8 | 0.15 | 0.2 | 0 | Bal. |
Al-Cu-Mg-Sc-Zr-Ag | 5 | 0.8 | 0.15 | 0.2 | 0.5 | Bal. |
Al-5Cu-0.8Mg-0.15Zr-0.2Sc | |||
Temperatures/°C | Stress/MPa | ||
300 | 325 | 350 | |
150 | 1.85 × 10−8 s−1 | 4.61 × 10−8 s−1 | 8.31 × 10−8 s−1 |
Temperatures/°C | Stress/MPa | ||
150 | 175 | 200 | |
200 | 4.85 × 10−8 s−1 | 9.89 × 10−8 s−1 | 1.67 × 10−7 s−1 |
Temperatures/°C | Stress/MPa | ||
100 | 100 | 100 | |
250 | 1.60 × 10−6 s−1 | 3.63 × 10−6 s−1 | 6.18 × 10−6 s−1 |
Al-5Cu-0.8Mg-0.15Zr-0.2Sc-0.5Ag | |||
Temperatures/°C | Stress/MPa | ||
300 | 325 | 350 | |
150 | 2.52 × 10−8 s−1 | 6.19 × 10−8 s−1 | 1.59 × 10−7 s−1 |
Temperatures/°C | Stress/MPa | ||
150 | 175 | 200 | |
200 | 2.16 × 10−8 s−1 | 2.87 × 10−8 s−1 | 1.24 × 10−7 s−1 |
Temperatures/°C | Stress/MPa | ||
100 | 100 | 100 | |
250 | 6.39 × 10−7 s−1 | 2.22 × 10−6 s−1 | 1.72 × 10−6 s−1 |
Alloy | Temperature/°C | β | CMG |
---|---|---|---|
Al-5Cu-0.8Mg-0.2Sc-0.15Zr | 150 | 0.61 | 1.34 × 10−2 |
200 | 0.6 | 1.29 × 10−2 | |
250 | 0.62 | 1.57 × 10−2 | |
Al-5Cu-0.8Mg-0.2Sc-0.15Zr-0.5Ag | 150 | 0.88 | 1.96 × 10−2 |
200 | 0.77 | 1.88 × 10−2 | |
250 | 0.8 | 1.73 × 10−2 |
Creep Process | Equation |
---|---|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
The material constants used for Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) alloy | |
γ = 0.33 | E = 7.2 × 105 MPa |
b = 0.255 nm [39] | |
k = 1.38 × 10−23 J/K [36,37,38] |
Alloy | Temperature/°C | Normalized Grain Size with Burgers Vector Compensation (d/b) × 10−7 | Normalized Flow Stress of Modulus Compensation (σ/E) × 104 | Strain Rate έ/(10−8·s−1) |
---|---|---|---|---|
Al-5Cu-0.8Mg-0.2Sc-0.15Zr | 150 | 6.7~9.7 | 11.2~43.9 | 1.85~618 |
Al-5Cu-0.8Mg-0.2Sc-0.15Zr | 250 | 8.9~10.9 | 2.6~17.8 | 1.85~618 |
Al-5Cu-0.8Mg-0.2Sc-0.15Zr-0.5Ag | 150 | 9.7~12.7 | 13.2~49.9 | 1.85~618 |
Al-5Cu-0.8Mg-0.2Sc-0.15Zr-0.5Ag | 250 | 10.4~13.9 | 4.69~19.0 | 1.85~618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, G.; Che, X.; Li, F.; Chen, L. Effects of Ag on High-Temperature Creep Behaviors of Peak-Aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag). Crystals 2023, 13, 1096. https://doi.org/10.3390/cryst13071096
Wang Y, Zhou G, Che X, Li F, Chen L. Effects of Ag on High-Temperature Creep Behaviors of Peak-Aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag). Crystals. 2023; 13(7):1096. https://doi.org/10.3390/cryst13071096
Chicago/Turabian StyleWang, Ying, Ge Zhou, Xin Che, Feng Li, and Lijia Chen. 2023. "Effects of Ag on High-Temperature Creep Behaviors of Peak-Aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag)" Crystals 13, no. 7: 1096. https://doi.org/10.3390/cryst13071096
APA StyleWang, Y., Zhou, G., Che, X., Li, F., & Chen, L. (2023). Effects of Ag on High-Temperature Creep Behaviors of Peak-Aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag). Crystals, 13(7), 1096. https://doi.org/10.3390/cryst13071096