Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Abstract
1. Introduction
2. Samples and Methods
2.1. Treatment Experiment and Analysis Method
2.2. Samples
2.3. Surface and Interior Characteristics
3. Results
3.1. Infrared Spectra
3.2. UV-Visible Spectra
3.3. Raman Spectra Tests
3.4. Scanning Electron Microprobe Analyses
3.5. LA-ICP-MS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.K.; Kong, H.J.; Kim, J.H.; Han, S.K. Laser treatment of colorless natural and synthetic corundum. J. Gemmol. 2012, 33, 171–176. [Google Scholar]
- Rao, K.S.; Sahoo, R.K.; Dash, T.; Magudapathy, P.; Panigrahi, B.K.; Nayak, B.B.; Mishra, B.K. N and Cr ion implantation of natural ruby surfaces and their characterization. Nucl. Instrum. Methods Phys. Res. Sect. B 2016, 373, 70–75. [Google Scholar] [CrossRef]
- Eaton-Magaña, S.; Rondeau, B. The market for colored gemstones: Understanding supply chains, challenges and opportunities in the ruby market. Resour. Policy 2021, 71, 102123. [Google Scholar]
- Palke, A.C. The market for heat-treated rubies: The double-edged sword of transparency and consumer perceptions in the gem industry. Resour. Policy 2019, 64, 101496. [Google Scholar]
- Hughes, E.B.; Vertriest, W. A Canary In The Ruby Mine: Low-Temperature Heat Treatment Experiments On Burmese Ruby. Gems Gemol. 2022, 58, 400–423. [Google Scholar] [CrossRef]
- Paridieu, V.; Saeseaw, S.; Detroyat, S.; Raynaud, V.; Sangsawong, S.; Bhusrisom, T.; Engniwat, S.; Muyal, J. “Low Temperature” Heat Treatment of Mozambique Ruby—Results Report; GIA: Carlsbad, CA, USA, 2015; pp. 1–34. [Google Scholar]
- Phlayrahan, A.; Monarumit, N.; Satitkune, S.; Wathanakul, P. Detection of Heat Treatment in Ruby and Sapphire by Using Infrared Spectroscopy. Gems Gemmol. 2018, 201, 141–142. [Google Scholar]
- Saeseaw, S.; Kongsomart, B.; Atikarnsakul, U.; Khowpong, C.; Vertriest, W.; Soonthorntantikul, W. Update on “Low-Temperature” Heat Treatment of Mozambican Ruby: A Focus on Inclusions and FTIR Spectroscopy; GIA: Carlsbad, CA, USA, 2018; pp. 1–47. [Google Scholar]
- Müller, T.; Hofmeister, W.; Rauer, S.; Tucoulou, R. Heating-induced changes in UV–vis–NIR spectra of natural and synthetic ruby. Phys. Chem. Miner. 2019, 46, 597–610. [Google Scholar] [CrossRef]
- Sakthivel, R.; Pradhan, K.C.; Nayak, B.B.; Dash, T.; Sahu, R.K.; Mishra, B.K. Effect of fusion mixture treatment on the surface of low grade natural ruby. Appl. Surf. Sci. 2017, 403, 267–273. [Google Scholar] [CrossRef]
- Lu, Q.; Li, X.; Sun, L.; Qin, B. Chemical and Spectral Variations between Untreated and Heat-Treated Rubies from Mozambique and Madagascar. Minerals 2022, 12, 894. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Hu, Z.; Gao, S.; Zong, K.; Chen, H. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%. Chem. Geol. 2011, 284, 283–295. [Google Scholar] [CrossRef]
- Vashishta, P.; Kalia, R.K.; Singh, R.K. Electronic structure and optical properties of Al2O3, Cr2O3 and ruby as studied by the first-principles calculations. J. Phys. Condens. Matter 2001, 13, 11133–11145. [Google Scholar]
- Pardiu, V.; Thanachakaphad, J. Rubies reportedly from Mozambique. Gems Gemol. 2012, 48, 149–150. [Google Scholar]
- Sinha, J.K.; Mishra, P.K. Spectroscopic and microstructural studies of ruby gemstones of Sinapalli, Odisha. J. Geol. Soc. India 2015, 86, 657–662. [Google Scholar] [CrossRef]
- Raghavan, S.; Imbrie, P.K.; Crossley, W.A. Spectral Analysis of R-lines and Vibronic Sidebands in the Emission Spectrum of Ruby Using Genetic Algorithms. Appl. Spectrosc. 2008, 62, 759. [Google Scholar] [CrossRef]
- Jackson, S.D.; King, T.A. Photophysics and lasing characteristics of chromium-doped colquiriite lasers. J. Opt. Soc. Am. B 2003, 20, 2637–2653. [Google Scholar]
- Iakoubovskii, K.; Tomilin, M. The UV-visible-NIR spectra of Cr-doped sapphire crystals. Opt. Mater. Express 2012, 2, 631–636. [Google Scholar]
- Duffy, J.A.; Keenan, M.R. The ultraviolet absorption spectra of natural and synthetic ruby. Spectrochim. Acta Part A Mol. Spectrosc. 1977, 33, 327–332. [Google Scholar]
- Sutherland, F.L.; Groat, L.A. The UV absorption spectrum of corundum from different worldwide localities. Can. Mineral. 2005, 43, 1835–1846. [Google Scholar]
- Johnson, M.L.; Hausladen, P. The absorption spectrum of ruby at low temperatures. J. Lumin. 1975, 11, 43–50. [Google Scholar]
- Wang, W.; Hu, Q.; Li, J. Study on ruby and sapphire using ultraviolet-visible-near infrared spectroscopy and two-dimensional correlation analysis. Spectrosc. Spectr. Anal. 2014, 34, 339–343. [Google Scholar]
- Drouin, M.A.; Fritsch, E. UV-vis-NIR spectroscopy applied to gem testing. Aust. Gemmol. 2007, 23, 451–461. [Google Scholar]
- Webster, R. Gem Testing; Butterworth-Heinemann: Oxford, UK, 2006. [Google Scholar]
- Wu, Z.; Zhang, J.; Liu, P.; Xu, H. Pressure-dependent Raman spectra of synthetic ruby. J. Appl. Phys. 2010, 107, 083509. [Google Scholar]
- Kim, N.; Yang, W. Raman spectroscopy and X-ray diffraction analyses of zirconia-doped ruby crystals. Opt. Mater. Express 2018, 8, 1337–1347. [Google Scholar]
- RRUFF Project. Rutile R050031. Available online: http://rruff.info/rutile (accessed on 1 January 2020).
- Zhang, M.; Li, Q.; Mao, J.; Wang, X. Mineralogical and geochemical characteristics of ruby and its host rocks from Mogok metamorphic belt, Burma. Ore Geol. Rev. 2016, 72, 957–970. [Google Scholar]
- RRUFF Project. Calcite R050048. Available online: http://rruff.info/calcite (accessed on 1 January 2020).
- Shatskiy, A.; Taran, M. Raman spectra of dolomite inclusions in ruby crystals: Evidence for a complex composition. J. Raman Spectrosc. 2016, 47, 428–434. [Google Scholar]
- Taran, M.N.; Polyakov, V.O.; Shatskiy, A.F. Spectroscopic features of ruby crystals containing Cr-rich spinel and dolomite inclusions with unusual composition. J. Appl. Spectrosc. 2016, 83, 250–257. [Google Scholar]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Garnier, V. Ruby and sapphire from Jegdalek (Afghanistan): Unusual trace-elements, fluid and mineral inclusions, and oxygen isotopic characteristics. J. Asian Earth Sci. 2007, 30, 240–252. [Google Scholar]
- Karampelas, S. Heat treatment of Fe-bearing corundum: A review. Gems Gemol. 2016, 52, 298–313. [Google Scholar]
- Emmett, J.L.; Scarratt, K. The effect of heat treatment on the Fe content and color of ruby from Winza, Tanzania. J. Gemmol. 2017, 36, 738–750. [Google Scholar]
- Kitawaki, H.; Shimizu, K.; Kuroda, D. Effect of Fe content and heat treatment on the color of ruby. J. Gemmol. 2019, 36, 598–604. [Google Scholar]
- Vodolazov, O.; Shorokhova, A. The relationship between Fe contents and colour changes in Mozambique rubies upon heat treatment. Mineral. Mag. 2021, 85, 1–11. [Google Scholar]
- Monarumit, N.; Lhuaamporn, T.; Satitkune, S.; Wongkokua, W. Effect of Beryllium Heat Treatment in Synthetic Ruby. J. Appl. Spectrosc. 2019, 86, 486–492. [Google Scholar] [CrossRef]
- Turchaninov, A.A.; Ivanov, S.A. Heat Treatment of Ruby in the Mixed Gas Environment of Hydrogen and Oxygen. Phys. Solid State 2017, 59, 1870–1876. [Google Scholar]
- Mehta, B.K. Thermally Induced Color Changes in Rubies: An X-ray Diffraction and Infrared Study. Thermochim. Acta 2018, 668, 60–66. [Google Scholar]
- Nassau, K. The early history of gemstone treatments. Gems Gemol. 1984, 20, 22–33. [Google Scholar] [CrossRef]
- Nassau, K. The Physics and Chemistry of Color. Am. J. Phys. 1985, 53, 1018–1019. [Google Scholar] [CrossRef]
Label | Specific Gravity (SG) | Fluorescence | Appearance |
---|---|---|---|
MD-N | 4.29 | None | Cleavage and the flash cleavage surface |
MD-1200 | 3.87 | None | Cleavage and brown dip-dye |
MD-1400 | 3.91 | LW:Intense red SW:None | Hexagonal short columnar, white dip-dye and dark minerals |
MD-1600 | 3.76 | LW:None SW:Faint red | Cleavage and white dip-dye |
MS-N | 3.90 | LW:Moderate red SW:None | Hexagonal sheet and dark impurity mineral |
MS-1400 | 3.79 | LW:Intense red SW:Faint red | Hexagonal long columnar, dark minerals, white impurity and brown dip-dye |
MS-1600 | 3.96 | LW:Intense red SW:Faint red | Hexagonal long columnar, dark minerals and brown dip-dye |
TS-N | 4.25 | LW:Intense red SW:None | Fissure and Cleavage |
TS-1200 | 4.00 | LW:Intense red SW:None | dark minerals and white dip-dye |
TS-1400 | 3.60 | LW:Intense red SW:None | Cleavage and white dip-dye |
TS-1600 | 3.63 | LW:Intense red SW:None | Cleavage and white to pink impurity mineral |
Document Wavelength | Measured Wavelength | Causes |
---|---|---|
370–380 | 375 | Fe3+ d-d electron transition and Fe2+-Fe3+ charge transfer |
494 | 480 | Ti3+ d-d electron transition [24] |
560 | - | Ti4+-Fe2+ and Ti3+-Fe3+ charge transfer [23] |
659 | 652 | Cr3+ spin forbidden transition [25] |
666 | 665 | Cr3+ d-d electron transition [23] |
693 | 684 | Cr3+ spin forbidden transition [25] |
830 | 843 | Ti4+-Fe2+ charge transfer [24] |
Label | Al2O3 | Cr2O3 | FeO | SiO2 | Na2O | TiO | MgO | NiO | MnO |
---|---|---|---|---|---|---|---|---|---|
MD-N | 99.383 | 1.023 | 0.001 | 0.511 | 0.098 | 0.000 | 0.173 | 0.000 | 0.643 |
MD-1200 | 95.490 | 2.543 | 0.179 | 0.438 | 0.002 | 0.01 | 0.003 | 0.000 | 0.000 |
MD-1600 | 96.782 | 2.068 | 0.247 | 0.755 | 0.076 | 0.001 | 0.003 | 0.000 | 0.019 |
MS-N | 98.813 | 0.251 | 0.225 | 0.766 | 0.044 | 0.019 | 0.017 | 0.000 | 0.036 |
MS-1400 | 99.275 | 0.185 | 0.399 | 0.627 | 0.125 | 0.000 | 0.009 | 0.046 | 0.022 |
MS-1600 | 99.927 | 0.164 | 0.399 | 0.077 | 0.027 | 0.037 | 0.005 | 0.000 | 0.039 |
TS-N | 99.315 | 0.338 | 0.266 | 0.096 | 0.013 | 0.035 | 0.003 | 0.067 | 0.000 |
TS-1200 | 99.149 | 0.405 | 0.168 | 0.066 | 0.018 | 0.047 | 0.001 | 0.000 | 0.012 |
TS-1600 | 96.798 | 1.249 | 0.163 | 0.207 | 0.054 | 0.056 | 0.006 | 0.050 | 0.013 |
Label | Cr (ppm) | Fe (ppm) | Ti (ppm) | Mg (ppm) | Ga (ppm) | V (ppm) |
---|---|---|---|---|---|---|
MD-N | 3501.3 | 0.0 | 1.2 | 1036.3 | 2963.6 | 3290.5 |
MD-1200 | 8700.3 | 0.1 | 42.1 | 19.9 | 21.7 | 5.9 |
MD-1600 | 8673.4 | 0.2 | 13.4 | 13.0 | 23.0 | 5.2 |
MS-N | 733.9 | 853.9 | 158.8 | 45.2 | 117.2 | 47.9 |
MS-1400 | 905.5 | 2431.5 | 29.8 | 27.6 | 45.7 | 3.5 |
MS-1600 | 734.8 | 2503.5 | 49.8 | 36.1 | 48.3 | 13.4 |
TS-N | 2828.3 | 1022.6 | 0.0 | 0.0 | 122.8 | 64.1 |
TS-1200 | 2809.7 | 1513.3 | 0.0 | 0.0 | 16.7 | 5.0 |
TS-1600 | 6853.2 | 1240.8 | 23.3 | 16.2 | 29.7 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Lu, Q.; Ma, D.; Zheng, H.; Hu, R.; Shi, Z.; Qin, B. Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania. Crystals 2023, 13, 1051. https://doi.org/10.3390/cryst13071051
Yang L, Lu Q, Ma D, Zheng H, Hu R, Shi Z, Qin B. Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania. Crystals. 2023; 13(7):1051. https://doi.org/10.3390/cryst13071051
Chicago/Turabian StyleYang, Ling, Qi Lu, Di Ma, Hairong Zheng, Ruoshui Hu, Zhuohang Shi, and Binrong Qin. 2023. "Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania" Crystals 13, no. 7: 1051. https://doi.org/10.3390/cryst13071051
APA StyleYang, L., Lu, Q., Ma, D., Zheng, H., Hu, R., Shi, Z., & Qin, B. (2023). Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania. Crystals, 13(7), 1051. https://doi.org/10.3390/cryst13071051