Ferroelectric SnPz/In2Se3 as a Stable and Durable Non-Volatile 2D Ferroelectric Memory Material
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, Z.; Hu, Q.; Xu, Z.-X.; Wang, J.; Chen, Z.; Wang, Y.; Chen, M.; Zhou, K.; Zhou, Y.; Han, S.-T. Organic memristor utilizing copper phthalocyanine nanowires with infrared response and cation regulating properties. Adv. Electron. Mater. 2019, 5, 1800793. [Google Scholar] [CrossRef]
- Au-Duong, A.-N.; Kuo, C.-C.; Chiu, Y.-C. Self-assembled oligosaccharide-based block copolymers as charge-storage materials for memory devices. Polym. J. 2018, 50, 649–658. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, Q.; Ling, H.; Li, W.; Ju, R.; Bian, L.; Shi, N.; Qian, Y.; Yi, M.; Xie, L.; et al. Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv. Funct. Mater. 2019, 29, 1904602. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.; Liao, Q.; Shan, H.; Chen, J.; Zhou, Y.; Zhou, L.; Chen, X.; Roy, V.A.L.; Wang, Z.; et al. Synergies of electrochemical metallization and valence change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater. 2018, 30, 1800327. [Google Scholar] [CrossRef]
- Wang, M.; Cai, S.; Pan, C.; Wang, C.; Lian, X.; Zhuo, Y.; Xu, K.; Cao, T.; Pan, X.; Wang, B.; et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; Xiao, M.; Liang, R.; Zhou, N.Y. UV-induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv. Funct. Mater. 2018, 28, 1706230. [Google Scholar] [CrossRef]
- Lee, L.; Hwang, J.; Jung, J.W.; Kim, J.; Lee, H.-I.; Heo, S.; Yoon, M.; Choi, S.; Van Long, N.; Park, J.; et al. ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors. Nat. Commun. 2019, 10, 1998. [Google Scholar] [CrossRef] [Green Version]
- Chanthbouala, A.; Garcia, V.; Cherifi, R.O.; Bouzehouane, K.; Fusil, S.; Moya, X.; Xavier, S.; Yamada, H.; Deranlot, C.; Mathur, N.D.; et al. A ferroelectric memristor. Nat. Mater. 2012, 11, 860–864. [Google Scholar] [CrossRef] [Green Version]
- Kurenkov, A.; DuttaGupta, S.; Zhang, C.; Fukami, S.; Horio, Y.; Ohno, H. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin-orbit torque switching. Adv. Mater. 2019, 31, 1900636. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.F. Applications of modern ferroelectrics. Science 2007, 315, 954–959. [Google Scholar] [CrossRef]
- Wang, D.-S. Impact of forming gas annealing on the dielectric properties of SrBi2Ta2O9 thin films prepared by metalorganic decomposition. J. Appl. Phys. 2012, 112, 084104. [Google Scholar] [CrossRef]
- Roy, A.; Maity, S.; Dhar, A.; Bhattacharya, D.; Ray, S. Temperature dependent leakage current behavior of pulsed laser ablated SrBi2Ta2O9 thin films. J. Appl. Phys. 2009, 105, 044103. [Google Scholar] [CrossRef]
- Banerjee, W. Challenges and applications of emerging nonvolatile memory devices. Electronics 2020, 9, 1029. [Google Scholar] [CrossRef]
- Arimoto, Y.; Ishiwara, H. Current status of ferroelectric random-access memory. MRS Bull. 2004, 29, 823–828. [Google Scholar] [CrossRef]
- Scott, J.F.; Paz de Araujo, C.A. Ferroelectric memories. Science 1989, 246, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Tagantsev, A.K.; Stolichnov, I.; Colla, E.L.; Setter, N. Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 2001, 90, 1387–1402. [Google Scholar] [CrossRef]
- Ihlefeld, J.F.; Harris, D.T.; Keech, R.; Jones, J.L.; Maria, J.-P.; Trolier-McKinstry, S. Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 2016, 99, 2537–2557. [Google Scholar] [CrossRef]
- Junquera, J.; Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 2003, 422, 506–509. [Google Scholar] [CrossRef]
- Kim, D.J.; Jo, J.Y.; Kim, Y.S.; Chang, Y.J.; Lee, J.S.; Yoon, J.-G.; Song, T.K.; Noh, T.W. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. 2005, 95, 237602. [Google Scholar] [CrossRef] [Green Version]
- de Araujo, C.A.P.; Cuchiaro, J.D.; McMillan, L.D.; Scott, M.C.; Scott, J.F. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 1995, 374, 627–629. [Google Scholar] [CrossRef]
- Goux, L.; Russo, G.; Menou, N.; Lisoni, J.G.; Schwitters, M.; Paraschiv, V.; Maes, D.; Artoni, C.; Corallo, G.; Haspeslagh, L.; et al. A highly reliable 3D integrated SBT ferroelectric capacitor enabling FeRAM scaling. IEEE Trans. Electron Devices 2005, 52, 447–453. [Google Scholar] [CrossRef]
- Chang, K.; Liu, J.; Lin, H.; Wang, N.; Zhao, K.; Zhang, A.; Jin, F.; Zhong, Y.; Hu, X.; Duan, W.; et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Zeng, X.C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016, 16, 3236–3241. [Google Scholar] [CrossRef]
- Fei, R.; Kang, W.; Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 2016, 117, 097601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehboudi, M.; Fregoso, B.M.; Yang, Y.; Zhu, W.; Van Der Zande, A.; Ferrer, J.; Bellaiche, L.; Kumar, P.; Barraza-Lopez, S. Structural phase transition and material properties of few-layer monochalcogenides. Phys. Rev. Lett. 2016, 117, 246802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, W.; Zhu, J.; Wang, Z.; Gao, Y.; Xiao, D.; Gu, Y.; Zhang, Z.; Zhu, W. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2 -VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qian, X. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 2017, 4, 015042. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Hu, W.J.; Yan, X.; Addiego, C.; Gao, W.; Wang, Y.; Wang, Z.; Li, L.; Cheng, Y.; Li, P.; et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 2018, 18, 1253–1258. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Xiang, H.; Xia, Y.; Jiang, K.; Wan, X.; He, J.; Yin, J.; Liu, Z. Monolayer AgBiP2Se6: An atomically thin ferroelectric semiconductor with out-plane polarization. Nanoscale 2017, 9, 8427–8434. [Google Scholar] [CrossRef]
- Fei, Z.; Zhao, W.; Palomaki, T.A.; Sun, B.; Miller, M.K.; Zhao, Z.; Yan, J.; Xu, X.; Cobden, D.H. Ferroelectric switching of a two-dimensional metal. Nature 2018, 560, 336–339. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wu, D.; Zhu, Y.; Cho, Y.; He, Q.; Yang, X.; Herrera, K.; Chu, Z.; Han, Y.; Downer, M.C.; et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 2017, 17, 5508–5513. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Zhu, H.; Wang, Y.; Feng, W.; Hu, Y.; Dasgupta, A.; Han, Y.; Wang, Y.; Muller, D.A.; Martin, L.W.; et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 2018, 120, 227601. [Google Scholar] [CrossRef] [Green Version]
- Heron, J.T.; Bosse, J.L.; He, Q.; Gao, Y.; Trassin, M.; Ye, L.; Clarkson, J.D.; Wang, C.; Liu, J.; Salahuddin, S.; et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 2014, 516, 370–373. [Google Scholar] [CrossRef]
- Scott, J.F. Data storage: Multiferroic memories. Nat. Mater. 2007, 6, 256–257. [Google Scholar] [CrossRef]
- Hou, P.; Xing, S.; Liu, X.; Chen, C.; Zhong, X.; Wang, J.; Ouyang, X. Resistive switching behavior in α-In2Se3 nanoflakes modulated by ferroelectric polarization and interface defects. RSC Adv. 2019, 9, 30565–30569. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Li, Y.; Li, W.; Mao, X.; Wang, C.; Chen, C.; Dong, J.; Nie, A.; Xiang, J.; Liu, Z.; et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv. Funct. Mater. 2019, 29, 1808606. [Google Scholar] [CrossRef]
- Tang, X.; Shang, J.; Gu, Y.; Du, A.; Kou, L. Reversible gas capture using a ferroelectric switch and 2D molecule multiferroics on the In2Se3 monolayer. J. Mater. Chem. A 2020, 8, 7331–7338. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Shang, J.; Ma, Y.; Gu, Y.; Chen, C.; Kou, L. Tuning magnetism of metal porphyrazine molecules by a ferroelectric In2Se3 monolayer. ACS Appl. Mater. Interfaces 2020, 12, 39561–39566. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, B.; Chen, X.; Qian, X.; Qi, J. Electric field control of molecular magnetic state by two-dimensional ferroelectric heterostructure engineering. Appl. Phys. Lett. 2020, 117, 082902. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, C.; Yang, C.; Chen, M.; Yang, S.A.; Hu, J.; Ren, Z.; Pan, H.; Zhu, W.; Xu, Z.-A.; et al. Ferroelectric control of single-molecule magnetism in 2D limit. Sci. Bull. 2020, 65, 1252–1259. [Google Scholar] [CrossRef]
- Ju, L.; Tan, X.; Mao, X.; Gu, Y.; Smith, S.; Du, A.; Chen, Z.; Chen, C.; Kou, L. Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat. Commun. 2021, 12, 5128. [Google Scholar] [CrossRef]
- Kim, H.S. Computational design of a switchable heterostructure electrocatalyst based on a two-dimensional ferroelectric In2Se3 material for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 11553–11562. [Google Scholar] [CrossRef]
- Wang, Z.; Day, P.N.; Pachter, R. Density functional theory studies of meso-alkynyl porphyrins. J. Chem. Phys. 1998, 108, 2504–2510. [Google Scholar] [CrossRef]
- Beljonne, D.; O’Keefe, G.E.; Hamer, P.J.; Friend, R.H.; Anderson, H.L.; Brédas, J.L. Investigation of the linear and nonlinear optical response of edge-linked conjugated zinc porphyrin oligomers by optical spectroscopy and configuration interaction techniques. J. Chem. Phys. 1997, 106, 9439–9460. [Google Scholar] [CrossRef]
- Chen, P.; Tomov, I.V.; Dvornikov, A.S.; Nakashima, M.; Roach, J.F.; Alabran, D.M.; Rentzepis, P.M. Picosecond kinetics and reverse saturable absorption of meso-substituted tetrabenzoporphyrins. J. Phys. Chem. 1996, 100, 17507–17512. [Google Scholar] [CrossRef]
- Henari, F.Z.; Blau, W.J.; Milgrom, L.R.; Yahioglu, G.; Phillips, D.; Lacey, J.A. Third-order optical non-linearity in Zn( II) complexes of 5,10,15,20-tetraarylethynyl-substituted porphyrins. Chem. Phys. Lett. 1997, 267, 229–233. [Google Scholar] [CrossRef]
- Petrov, O.A. Regularities of the catalytic influence of organic base on the formation of magnesium and zinc complexes of porphyrazines. Russ. Chem. Bull. 2022, 71, 613–619. [Google Scholar] [CrossRef]
- Im, Y.K.; Lee, D.G.; Noh, H.J.; Yu, S.Y.; Mahmood, J.; Lee, S.Y.; Baek, J.B. Crystalline porphyrazine-linked fused aromatic networks with high proton conductivity. Angew. Chem. Int. Edit. 2022, 61, e202203250. [Google Scholar] [CrossRef] [PubMed]
- Leda, A.; Hassani, M.; Rebis, T.; Falkowski, M.; Piskorz, J.; Mlynarczyk, D.T.; McNeice, P.; Milczarek, G. Improved electrochemical hydrogen peroxide detection using a nickel(II) phthalimide-substituted porphyrazine combined with various carbon nanomaterials. Nanomaterials 2023, 13, 862. [Google Scholar] [CrossRef]
- Silva, H.N.; Toma, S.H.; Hennemann, A.L.; Gonçalves, J.M.; Nakamura, M.; Araki, K.; Toyama, M.M.; Toma, H.E. A new supramolecular tetraruthenated cobalt(II) porphyrazine displaying outstanding electrocatalytical performance in oxygen evolution reaction. Molecules 2022, 27, 4598. [Google Scholar] [CrossRef] [PubMed]
- Yagodin, A.V.; Mikheev, I.A.; Bunin, D.A.; Sinelshchikova, A.A.; Martynov, A.G.; Gorbunova, Y.G.; Tsivadze, A.Y. Tetraquinoxalinoporphyrazine–π-extended NIR-absorbing photosensitizer with improved photostability. Dyes Pigm. 2023, 216, 111326. [Google Scholar] [CrossRef]
- Koczorowski, T.; Szczolko, W.; Bakun, P.; Wicher, B.; Sobotta, L.; Gdaniec, M.; Teubert, A.; Mielcarek, J.; Tykarska, E.; Korecki, J.; et al. The valence and spin state tuning of iron(II/III) porphyrazines with bulky pyrrolyl periphery in solution and solid state. Molecules 2022, 27, 7820. [Google Scholar] [CrossRef] [PubMed]
- Malyasova, A.S.; Smirnova, P.N.; Koifman, O.I. Complexation of benzoannelated porphyrazines with zinc(II) and cobalt(II) acetates in pyridine. Russ. J. Inorg. Chem. 2022, 67, 388–394. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, C.; Zhang, B.; Deng, K. Cobalt porphyrazine supported on SnO2 with oxygen vacancies for boosting photocatalytic aerobic oxidation of glucose to organic acids in an aqueous medium. ACS Sustain. Chem. Eng. 2021, 9, 2057–2066. [Google Scholar] [CrossRef]
- Ristori, S.; Ricciardi, G.; Pietrangeli, D.; Rosa, A.; Feis, A. Hydrotropic solubilization of gold nanoparticles functionalized with proto-alkylthioporphyrazines. J. Phys. Chem. C 2009, 113, 8537–8540. [Google Scholar] [CrossRef]
- Falkowski, M.; Leda, A.; Rebis, T.; Piskorz, J.; Popenda, L.; Hassani, M.; Mlynarczyk, D.T.; Marszall, M.P.; Milczarek, G. A synergistic effect of phthalimide-substituted sulfanyl porphyrazines and carbon nanotubes to improve the electrocatalytic detection of hydrogen peroxide. Molecules 2022, 27, 4409. [Google Scholar] [CrossRef]
- Baran, J.D.; Larsson, J.A. Structure and energetics of shuttlecock-shaped tin-phthalocyanine on Ag(111): A density functional study employing dispersion correction. J. Phys. Chem. C 2012, 116, 9487–9497. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, X.; Manzano, C.; Kröger, J.; Berndt, R.; Hofer, W.A.; Tang, H.; Cerda, J. Supramolecular patterns controlled by electron interference and direct intermolecular interactions. J. Am. Chem. Soc. 2009, 131, 10400–10402. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bučko, T.; Hafner, J.; Lebègue, S.; Ángyán, J.G. Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 2010, 114, 11814–11824. [Google Scholar] [CrossRef] [PubMed]
- Tersoff, J.; Hamann, D.R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, K.; Garrity, K.F.; Camp, C.; Kalinin, S.V.; Vasudevan, R.; Ziatdinov, M.; Tavazza, F. Computational scanning tunneling microscope image database. Sci. Data 2021, 8, 57. [Google Scholar] [CrossRef]
- Tao, K.; Stepanyuk, V.S.; Hergert, W.; Rungger, I.; Sanvito, S.; Bruno, P. Switching a single spin on metal surfaces by a STM tip: Ab initio studies. Phys. Rev. Lett. 2009, 103, 057202. [Google Scholar] [CrossRef] [PubMed]
- Tersoff, J. Method for the calculation of scanning tunneling microscope images and spectra. Phys. Rev. B 1989, 40, 11990. [Google Scholar] [CrossRef]
- Szulbinski, W.S.; Kincaid, J.R. Synthesis and spectroscopic characterization of zinc tetra(3,4-pyridine) porphyrazine entrapped within the supercages of Y-Zeolite. Inorg. Chem. 1998, 37, 5014–5020. [Google Scholar] [CrossRef]
- Wang, B.; Engelhardt, V.; Roth, A.; Faust, R.; Guldi, D.M. n-versus p-doping of graphite: What drives its wet-chemical exfoliation? Nanoscale 2017, 9, 11632–11639. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Eguchi, K.; Nanjo, C.; Takaoka, T.; Sainoo, Y.; Arafune, R.; Awaga, K.; Komeda, T. Enhanced magnetic spin–spin interactions observed between porphyrazine derivatives on Au(111). Commun. Chem. 2020, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hou, J.; Eguchi, K.; Nanjo, C.; Takaoka, T.; Sainoo, Y.; Awaga, K.; Komeda, T. Structural, electronic, and magnetic properties of cobalt tetrakis (thiadiazole) porphyrazine molecule films on Au(111). ACS Omega 2020, 5, 6676–6683. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Eguchi, K.; Nanjo, C.; Takaoka, T.; Sainoo, Y.; Awaga, K.; Komeda, T. Inter-molecule interaction for magnetic property of vanadyl tetrakis(thiadiazole) porphyrazine film on Au(111). Appl. Surf. Sci. 2018, 440, 16–19. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, Q.; Yang, C.; Zhang, B.; Deng, K. Photocatalytic oxidation of glucose in water to value-added chemicals by zinc oxide-supported cobalt thioporphyrazine. Catal. Sci. Technol. 2019, 9, 6909–6919. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, W.; Tian, J.; Pang, R.; Shang, Y. Ferroelectric SnPz/In2Se3 as a Stable and Durable Non-Volatile 2D Ferroelectric Memory Material. Crystals 2023, 13, 940. https://doi.org/10.3390/cryst13060940
Ren W, Tian J, Pang R, Shang Y. Ferroelectric SnPz/In2Se3 as a Stable and Durable Non-Volatile 2D Ferroelectric Memory Material. Crystals. 2023; 13(6):940. https://doi.org/10.3390/cryst13060940
Chicago/Turabian StyleRen, Weiwei, Jintao Tian, Rui Pang, and Yuanyuan Shang. 2023. "Ferroelectric SnPz/In2Se3 as a Stable and Durable Non-Volatile 2D Ferroelectric Memory Material" Crystals 13, no. 6: 940. https://doi.org/10.3390/cryst13060940
APA StyleRen, W., Tian, J., Pang, R., & Shang, Y. (2023). Ferroelectric SnPz/In2Se3 as a Stable and Durable Non-Volatile 2D Ferroelectric Memory Material. Crystals, 13(6), 940. https://doi.org/10.3390/cryst13060940