Additive-Assisted Crystallization of 9,10-Diphenylanthracene
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-ray Diffraction
2.2. Photoluminescence Measurements
3. Results and Discussion
3.1. Additive-Assisted Crystallization of 9,10-Diphenylanthracene
3.2. Co-Crystal of Pyrene and 9,10-Diphenylanthracene (PYR–DPA)
3.3. 9,10-Diphenylanthracene Polymorphism Control
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, Z.; Stingelin, N.; Ade, H.; Michels, J.J. A materials physics perspective on structure–processing–function relations in blends of organic semiconductors. Nat. Rev. Mater. 2023, 1–17. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Wang, L.; Yu, G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. Adv. Mater. 2023, 35, e2210772. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhao, Z.; Yang, K.; Niu, L.; Ma, X.; Zhou, Z.; Zhang, X.; Zhang, F. Recent progress in all-small-molecule organic photovoltaics. J. Mater. Chem. A 2022, 10, 6291–6329. [Google Scholar] [CrossRef]
- Parambil, J.V.; Poornachary, S.K.; Heng, J.Y.Y.; Tan, R.B.H. Template-induced nucleation for controlling crystal polymorphism: From molecular mechanisms to applications in pharmaceutical processing. CrystEngComm 2019, 21, 4122–4135. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, H.; Hu, W. Organic Semiconductor Single Crystals for Electronics and Photonics. Adv. Mater. 2018, 30, e1801048. [Google Scholar] [CrossRef]
- Podzorov, V. Organic single crystals: Addressing the fundamentals of organic electronics. MRS Bull. 2013, 38, 15–24. [Google Scholar] [CrossRef]
- Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 2007, 107, 1296–1323. [Google Scholar] [CrossRef]
- Parashchuk, O.D.; Mannanov, A.A.; Konstantinov, V.G.; Dominskiy, D.I.; Surin, N.M.; Borshchev, O.V.; Ponomarenko, S.A.; Pshenichnikov, M.S.; Paraschuk, D.Y. Molecular Self-Doping Controls Luminescence of Pure Organic Single Crystals. Adv. Funct. Mater. 2018, 28, 1800116. [Google Scholar] [CrossRef]
- Kazantsev, M.S.; Beloborodova, A.A.; Kuimov, A.D.; Koskin, I.P.; Frantseva, E.S.; Rybalova, T.V.; Shundrina, I.K.; Becker, C.S.; Mostovich, E.A. Synthesis, luminescence and charge transport properties of furan/phenylene co-oligomers: The study of conjugation length effect. Org. Electron. 2018, 56, 208–215. [Google Scholar] [CrossRef]
- Komori, T.; Nakanotani, H.; Yasuda, T.; Adachi, C. Light-emitting organic field-effect transistors based on highly luminescent single crystals of thiophene/phenylene co-oligomers. J. Mater. Chem. C 2014, 2, 4918–4921. [Google Scholar] [CrossRef]
- Hotta, S.; Yamao, T. The thiophene/phenylene co-oligomers: Exotic molecular semiconductors integrating high-performance electronic and optical functionalities. J. Mater. Chem. 2011, 21, 1295–1304. [Google Scholar] [CrossRef]
- Park, W.; Yun, C.; Yun, S.; Lee, J.-J.; Bae, S.; Ho, D.; Kim, C.; Seo, S. Effects of alkyl chain on the liquid crystalline properties of [1]benzothieno[3,2-b][1]benzothiophene-based organic semiconductors. Org. Electron. 2022, 105, 106508. [Google Scholar] [CrossRef]
- Li, J.; Qin, Z.; Sun, Y.; Zhen, Y.; Liu, J.; Zou, Y.; Li, C.; Lu, X.; Jiang, L.; Zhang, X.; et al. Regulating Crystal Packing by Terminal tert-Butylation for Enhanced Solid-State Emission and Efficacious Charge Transport in an Anthracene-Based Molecular Crystal. Angew. Chem. Int. Ed. Engl. 2022, 61, e202206825. [Google Scholar] [CrossRef] [PubMed]
- Sosorev, A.Y.; Trukhanov, V.A.; Maslennikov, D.R.; Borshchev, O.V.; Polyakov, R.A.; Skorotetcky, M.S.; Surin, N.M.; Kazantsev, M.S.; Dominskiy, D.I.; Tafeenko, V.A.; et al. Fluorinated Thiophene-Phenylene Co-Oligomers for Optoelectronic Devices. ACS Appl. Mater. Interfaces 2020, 12, 9507–9519. [Google Scholar] [CrossRef]
- An, M.H.; Ding, R.; Zhu, Q.C.; Ye, G.D.; Wang, H.; Du, M.X.; Chen, S.N.; Liu, Y.; Xu, M.L.; Xu, T.; et al. Well-Balanced Ambipolar Organic Single Crystals toward Highly Efficient Light-Emitting Devices. Adv. Funct. Mater. 2020, 30, 2002422. [Google Scholar] [CrossRef]
- Sosorev, A.Y.; Nuraliev, M.K.; Feldman, E.V.; Maslennikov, D.R.; Borshchev, O.V.; Skorotetcky, M.S.; Surin, N.M.; Kazantsev, M.S.; Ponomarenko, S.A.; Paraschuk, D.Y. Impact of terminal substituents on the electronic, vibrational and optical properties of thiophene-phenylene co-oligomers. Phys. Chem. Chem. Phys. 2019, 21, 11578–11588. [Google Scholar] [CrossRef] [PubMed]
- Kazantsev, M.S.; Beloborodova, A.A.; Frantseva, E.S.; Rybalova, T.V.; Konstantinov, V.G.; Shundrina, I.K.; Paraschuk, D.Y.; Mostovich, E.A. Methyl substituent effect on structure, luminescence and semiconducting properties of furan/phenylene co-oligomer single crystals. CrystEngComm 2017, 19, 1809–1815. [Google Scholar] [CrossRef]
- Jinjyo, T.; Mizuno, H.; Sasaki, F.; Yanagi, H. Polymorph- and molecular alignment-dependent lasing behaviors of a cyano-substituted thiophene/phenylene co-oligomer. J. Mater. Chem. C 2023, 11, 1714–1725. [Google Scholar] [CrossRef]
- Chung, H.; Chen, S.; Patel, B.; Garbay, G.; Geerts, Y.H.; Diao, Y. Understanding the Role of Bulky Side Chains on Polymorphism of BTBT-Based Organic Semiconductors. Cryst. Growth Des. 2020, 20, 1646–1654. [Google Scholar] [CrossRef]
- Sonina, A.A.; Koskin, I.P.; Sherin, P.S.; Rybalova, T.V.; Shundrina, I.K.; Mostovich, E.A.; Kazantsev, M.S. Crystal packing control of a trifluoromethyl-substituted furan/phenylene co-oligomer. Acta Cryst. B 2018, 74, 450–457. [Google Scholar] [CrossRef]
- Galindo, S.; Tamayo, A.; Leonardi, F.; Mas-Torrent, M. Control of Polymorphism and Morphology in Solution Sheared Organic Field-Effect Transistors. Adv. Funct. Mater. 2017, 27, 1700526. [Google Scholar] [CrossRef]
- Varghese, S.; Park, S.K.; Casado, S.; Resel, R.; Wannemacher, R.; Lüer, L.; Park, S.Y.; Gierschner, J. Polymorphism and Amplified Spontaneous Emission in a Dicyano-Distyrylbenzene Derivative with Multiple Trifluoromethyl Substituents: Intermolecular Interactions in Play. Adv. Funct. Mater. 2016, 26, 2349–2356. [Google Scholar] [CrossRef]
- Chung, H.; Diao, Y. Polymorphism as an emerging design strategy for high performance organic electronics. J. Mater. Chem. C 2016, 4, 3915–3933. [Google Scholar] [CrossRef]
- Sonina, A.A.; Kuimov, A.D.; Shumilov, N.A.; Koskin, I.P.; Kardash, T.Y.; Kazantsev, M.S. Additive-Assisted Perylene Polymorphism Controlled via Secondary Bonding Interactions. Cryst. Growth Des. 2023, 23, 2710–2720. [Google Scholar] [CrossRef]
- Kuimov, A.D.; Becker, C.S.; Sonina, A.A.; Kazantsev, M.S. Host–guest molecular doping guide for emissive organic semiconductor crystals. New J. Chem. 2022, 46, 21257–21267. [Google Scholar] [CrossRef]
- Campillo-Alvarado, G.; Bernhardt, M.; Davies, D.W.; Soares, J.; Woods, T.J.; Diao, Y. Modulation of pi-stacking modes and photophysical properties of an organic semiconductor through isosteric cocrystallization. J. Chem. Phys. 2021, 155, 071102. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, P.; Long, G.; Ganguly, R.; Li, Y.; Aratani, N.; Yamada, H.; Zhang, Q. Switching charge-transfer characteristics from p-type to n-type through molecular “doping” (co-crystallization). Chem. Sci. 2016, 7, 3851–3856. [Google Scholar] [CrossRef]
- Hutchins, K.M.; Groeneman, R.H.; Reinheimer, E.W.; Swenson, D.C.; MacGillivray, L.R. Achieving dynamic behaviour and thermal expansion in the organic solid state via co-crystallization. Chem. Sci. 2015, 6, 4717–4722. [Google Scholar] [CrossRef]
- Zhou, Q.; Lei, Y.; Fu, H. A molecular design principle towards luminescent polymorphic organic heterostructured architectures. J. Mater. Chem. C 2021, 9, 489–496. [Google Scholar] [CrossRef]
- Levesque, A.; Maris, T.; Wuest, J.D. ROY Reclaims Its Crown: New Ways To Increase Polymorphic Diversity. J. Am. Chem. Soc. 2020, 142, 11873–11883. [Google Scholar] [CrossRef]
- Singh, A.; Lee, I.S.; Kim, K.; Myerson, A.S. Crystal growth on self-assembled monolayers. CrystEngComm 2011, 13, 24–32. [Google Scholar] [CrossRef]
- Metherall, J.P.; Carroll, R.C.; Coles, S.J.; Hall, M.J.; Probert, M.R. Advanced crystallisation methods for small organic molecules. Chem. Soc. Rev. 2023, 52, 1995–2010. [Google Scholar] [CrossRef] [PubMed]
- Roche, G.H.; Flot, D.; Moreau, J.J.E.; Dautel, O.J.; Filhol, J.-S.; van der Lee, A. Packing Polymorphism Affecting the Optoelectronic Properties of a π-Conjugated Organic Compound. Cryst. Growth Des. 2021, 21, 3850–3863. [Google Scholar] [CrossRef]
- Cruz-Cabeza, A.J.; Davey, R.J.; Sachithananthan, S.S.; Smith, R.; Tang, S.K.; Vetter, T.; Xiao, Y. Aromatic stacking—A key step in nucleation. Chem. Commun. 2017, 53, 7905–7908. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S.C.B. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 2014, 7, 2145–2159. [Google Scholar] [CrossRef]
- Liu, C.; Minari, T.; Li, Y.; Kumatani, A.; Lee, M.V.; Athena Pan, S.H.; Takimiya, K.; Tsukagoshi, K. Direct formation of organic semiconducting single crystals by solvent vapor annealing on a polymer base film. J. Mater. Chem. 2012, 22, 8462–8469. [Google Scholar] [CrossRef]
- Cruz-Cabeza, A.J.; Feeder, N.; Davey, R.J. Open questions in organic crystal polymorphism. Commun. Chem. 2020, 3, 142. [Google Scholar] [CrossRef]
- Brog, J.-P.; Chanez, C.-L.; Crochet, A.; Fromm, K.M. Polymorphism, what it is and how to identify it: A systematic review. RSC Adv. 2013, 3, 16905–16931. [Google Scholar] [CrossRef]
- Mangin, D.; Puel, F.; Veesler, S. Polymorphism in Processes of Crystallization in Solution: A Practical Review. Org. Process Res. Dev. 2009, 13, 1241–1253. [Google Scholar] [CrossRef]
- Shtukenberg, A.G.; Lee, S.S.; Kahr, B.; Ward, M.D. Manipulating crystallization with molecular additives. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 77–96. [Google Scholar] [CrossRef]
- Song, R.-Q.; Cölfen, H. Additive controlled crystallization. CrystEngComm 2011, 13, 1249–1276. [Google Scholar] [CrossRef]
- Weissbuch, I.; Popovitz-Biro, R.; Lahav, M.; Leiserowitz, L. Understanding and control of nucleation, growth, habit, dissolution and structure of two- and three-dimensional crystals using ‘tailor-made’ auxiliaries. Acta Crystallogr. Sect. B 1995, 51, 115–148. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Gao, Z.; Gong, J.; Tang, W. Additive-assisted preferential crystallization of racemic component: A case of norvaline. J. Ind. Eng. Chem. 2022, 110, 206–216. [Google Scholar] [CrossRef]
- Shtukenberg, A.G.; Ward, M.D.; Kahr, B. Crystal growth inhibition by impurity stoppers, now. J. Cryst. Growth. 2022, 597, 126839. [Google Scholar] [CrossRef]
- Xu, S.; Cao, D.; Liu, Y.; Wang, Y. Role of Additives in Crystal Nucleation from Solutions: A Review. Cryst. Growth Des. 2021, 22, 2001–2022. [Google Scholar] [CrossRef]
- Losev, E.A.; Mikhailenko, M.A.; Achkasov, A.F.; Boldyreva, E.V. The effect of carboxylic acids on glycine polymorphism, salt and co-crystal formation. A comparison of different crystallisation techniques. New J. Chem. 2013, 37, 1973–1981. [Google Scholar] [CrossRef]
- Weissbuch, I.; Leiserowitz, L.; Lahav, M. Direct assignment of the absolute configuration of molecules from crystal morphology. Chirality 2008, 20, 736–748. [Google Scholar] [CrossRef]
- Sonina, A.A.; Becker, C.S.; Kuimov, A.D.; Shundrina, I.K.; Komarov, V.Y.; Kazantsev, M.S. Alkyl-substituted bis(4-((9H-fluoren-9-ylidene)methyl)phenyl)thiophenes: Weakening of intermolecular interactions and additive-assisted crystallization. CrystEngComm 2021, 23, 2654–2664. [Google Scholar] [CrossRef]
- de Boer, R.W.I.; Gershenson, M.E.; Morpurgo, A.F.; Podzorov, V. Organic single-crystal field-effect transistors. Phys. Status Solidi A 2004, 201, 1302–1331. [Google Scholar] [CrossRef]
- SAINT; Data Reduction and Frame Integration Program for the CCD Area-Detector System; Bruker Analytical X-ray Systems: Madison, WI, USA, 2006.
- Sheldrick, G.M. SADABS; Institute for Inorganic Chemistry, University of Goettingen: Goettingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Cryst. 2006, 39, 453–457. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. D 2009, 65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Langer, V.; Becker, H.D. Crystal structure of 9,10-diphenylanthracene, (C6H5)(C14H8)(C6H5). Z. Krist.-Cryst. Mater. 1992, 199, 313–315. [Google Scholar] [CrossRef]
- Salzillo, T.; Della Valle, R.G.; Venuti, E.; Brillante, A.; Siegrist, T.; Masino, M.; Mezzadri, F.; Girlando, A. Two New Polymorphs of the Organic Semiconductor 9,10-Diphenylanthracene: Raman and X-ray Analysis. J. Phys. Chem. C 2016, 120, 1831–1840. [Google Scholar] [CrossRef]
- Holmes, D.; Kumaraswamy, S.; Matzger, A.J.; Vollhardt, K.P.C. On the Nature of Nonplanarity in the [N]Phenylenes. Chem. Eur. J. 1999, 5, 3399–3412. [Google Scholar] [CrossRef]
- Kazantsev, M.S.; Frantseva, E.S.; Kudriashova, L.G.; Konstantinov, V.G.; Mannanov, A.A.; Rybalova, T.V.; Karpova, E.V.; Shundrina, I.K.; Kamaev, G.N.; Pshenichnikov, M.S.; et al. Highly-Emissive Solution-Grown Furan/Phenylene Co-Oligomer Single Crystals. RSC Adv. 2016, 6, 92325–92329. [Google Scholar] [CrossRef]
- Fabbiani, F.P.A.; Bergantin, S.; Gavezzotti, A.; Rizzato, S.; Moret, M. X-ray diffraction and computational studies of the pressure-dependent tetrachloroethane solvation of diphenylanthracene. CrystEngComm 2016, 18, 2173–2181. [Google Scholar] [CrossRef]
- Katoh, R.; Suzuki, K.; Furube, A.; Kotani, M.; Tokumaru, K. Fluorescence Quantum Yield of Aromatic Hydrocarbon Crystals. J. Phys. Chem. C 2009, 113, 2961–2965. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonina, A.A.; Cheshkina, D.S.; Kazantsev, M.S. Additive-Assisted Crystallization of 9,10-Diphenylanthracene. Crystals 2023, 13, 861. https://doi.org/10.3390/cryst13060861
Sonina AA, Cheshkina DS, Kazantsev MS. Additive-Assisted Crystallization of 9,10-Diphenylanthracene. Crystals. 2023; 13(6):861. https://doi.org/10.3390/cryst13060861
Chicago/Turabian StyleSonina, Alina A., Darya S. Cheshkina, and Maxim S. Kazantsev. 2023. "Additive-Assisted Crystallization of 9,10-Diphenylanthracene" Crystals 13, no. 6: 861. https://doi.org/10.3390/cryst13060861