Void Nucleation and Growth from Heterophases and the Exploitation of New Toughening Mechanisms in Metals
Abstract
1. Introduction
2. Methods to Evaluate Damage Evolution
3. Theories on Damage Evolution—Continuum Approach
4. Theories on Damage Evolution—Physics-Based Mechanisms
4.1. Void Nucleation and Growth Mechanisms at Nano- and Sub-Micron Scale: Atomistic Simulations and Dislocation Dynamics
4.2. Mesoscale Crystal Plasticity Analyses of Voids
5. Enhancement of Mechanical Properties by Hydrostatic Pressure
- A change in the shear modulus with pressure;
- The generation of local shear stress at the elastic discontinuities;
- An increase in the dislocation interaction energy and Peierls stress.
5.1. Effects of Superimposed Pressure on Plastic Flow
5.2. Effects of Superimposed Pressure on Plastic Flow
- Dislocation shells encapsulating the voids nucleated from particles serve as barriers for the dislocations gliding away from the void surfaces. Therefore, the void growth rate could be delayed;
- Hydrostatic stress increases the Peierls stress and dislocation interaction energy, generating additional barriers for the dislocation glide, hence resulting in void growth;
- Superimposed hydrostatic pressure counters the hydrostatic tension inside the deforming body.
6. Summary and Future Directions
- Dislocation shells form around the hetero-phase particles under pre-pressurization, which can further enhance the Orowan mechanisms;
- The dislocation shells increase the effective range of the back stresses between the heterophases [193];
- The work-hardening capacity of the matrix materials is preserved after pre-pressurization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leclerc, J.; Marteleur, M.; Colla, M.-S.; Pardoen, T.; Noels, L.; Nguyen, V.-D. Ductile Fracture of High Strength Steels with Morphological Anisotropy, Part II: Nonlocal Micromechanics-Based Modeling. Eng. Fract. Mech. 2021, 248, 107716. [Google Scholar] [CrossRef]
- Bonora, N.; Testa, G. Plasticity Damage Self-Consistent Model Incorporating Stress Triaxiality and Shear Controlled Fracture Mechanisms—Model Formulation. Eng. Fract. Mech. 2022, 271, 108634. [Google Scholar] [CrossRef]
- Benzerga, A.A.; Leblond, J.-B.; Needleman, A.; Tvergaard, V. Ductile Failure Modeling. Int. J. Fract. 2016, 201, 29–80. [Google Scholar] [CrossRef]
- Pineau, A.; Benzerga, A.A.; Pardoen, T. Failure of Metals I: Brittle and Ductile Fracture. Acta Mater. 2016, 107, 424–483. [Google Scholar] [CrossRef]
- Tipper, C.F. The Fracture of Metals. Metallurgia 1949, 39, 133–137. [Google Scholar]
- Goods, S.H.; Brown, L.M. Overview No. 1: The Nucleation of Cavities by Plastic Deformation. Acta Metall. 1979, 27, 1–15. [Google Scholar] [CrossRef]
- Das, A.; Kumar Chakravartty, J. Fractographic Correlations with Mechanical Properties in Ferritic Martensitic Steels. Surf. Topogr. 2017, 5, 045006. [Google Scholar] [CrossRef]
- Curran, D.R.; Seaman, L.; Shockey, D.A. Dynamic Failure of Solids. Phys. Rep. 1987, 147, 253–388. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315370293. [Google Scholar]
- Pineau, A.; Pardoen, T. Failure of Metals. In Comprehensive Structural Integrity; Milne, I., Ritchie, R.O., Karihaloo, B., Eds.; Pergamon: Oxford, UK, 2007; pp. 684–797. [Google Scholar]
- Wciślik, W.; Lipiec, S. Void-Induced Ductile Fracture of Metals: Experimental Observations. Materials 2022, 15, 6473. [Google Scholar] [CrossRef]
- Das, A.; Das, S.K.; Sivaprasad, S.; Tarafder, M.; Tarafder, S. Analysis of Damage Accumulations in High Strength Low Alloy Steels under Monotonic Deformation. Procedia Eng. 2013, 55, 786–792. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Tvergaard, V.; Needleman, A. Analysis of the Cup-Cone Fracture in a Round Tensile Bar. Acta Metall. 1984, 32, 157–169. [Google Scholar] [CrossRef]
- Leblond, J.B.; Perrin, G.; Suquet, P. Exact Results and Approximate Models for Porous Viscoplastic Solids. Int. J. Plast. 1994, 10, 213–235. [Google Scholar] [CrossRef]
- Benzerga, A.A.; Besson, J. Plastic Potentials for Anisotropic Porous Solids. Eur. J. Mech.—A/Solids 2001, 20, 397–434. [Google Scholar] [CrossRef]
- Thomason, P.F. A Three-Dimensional Model for Ductile Fracture by the Growth and Coalescence of Microvoids. Acta Metall. 1985, 33, 1087–1095. [Google Scholar] [CrossRef]
- Siruguet, K.; Leblond, J.-B. Effect of Void Locking by Inclusions upon the Plastic Behavior of Porous Ductile Solids—I: Theoretical Modeling and Numerical Study of Void Growth. Int. J. Plast. 2004, 20, 225–254. [Google Scholar] [CrossRef]
- Siruguet, K.; Leblond, J.-B. Effect of Void Locking by Inclusions upon the Plastic Behavior of Porous Ductile Solids—Part II: Theoretical Modeling and Numerical Study of Void Coalescence. Int. J. Plast. 2004, 20, 255–268. [Google Scholar] [CrossRef]
- Xu, Z.; Britton, B.; Guo, Y. Casting Voids in Nickel Superalloy and the Mechanical Behaviour under Room Temperature Tensile Deformation. Mater. Sci. Eng. A 2021, 806, 140800. [Google Scholar] [CrossRef]
- Chang, H.-J.; Segurado, J.; LLorca, J. Three-Dimensional Dislocation Dynamics Analysis of Size Effects on Void Growth. Scr. Mater. 2015, 95, 11–14. [Google Scholar] [CrossRef]
- Chang, H.J.; Segurado, J.; De La Fuente, O.R.; Pabón, B.M.; LLorca, J. Molecular Dynamics Modeling and Simulation of Void Growth in Two Dimensions. Model. Simul. Mat. Sci. Eng. 2013, 21, 75010. [Google Scholar] [CrossRef]
- Sills, R.B.; Boyce, B.L. Void Growth by Dislocation Adsorption. Mater. Res. Lett. 2020, 8, 103–109. [Google Scholar] [CrossRef]
- Segurado, J.; LLorca, J. Discrete Dislocation Dynamics Analysis of the Effect of Lattice Orientation on Void Growth in Single Crystals. Int. J. Plast. 2010, 26, 806–819. [Google Scholar] [CrossRef]
- Guo, Y.; Zong, C.; Britton, T.B. Development of Local Plasticity around Voids during Tensile Deformation. Mater. Sci. Eng. A 2021, 814, 141227. [Google Scholar] [CrossRef]
- Lubarda, V.A.; Schneider, M.S.; Kalantar, D.H.; Remington, B.A.; Meyers, M.A. Void Growth by Dislocation Emission. Acta Mater. 2004, 52, 1397–1408. [Google Scholar] [CrossRef]
- Lubarda, V.A. Image Force on a Straight Dislocation Emitted from a Cylindrical Void. Int. J. Solids Struct. 2011, 48, 648–660. [Google Scholar] [CrossRef]
- Gungor, M.R.; Maroudas, D.; Zhou, S. Molecular-Dynamics Study of the Mechanism and Kinetics of Void Growth in Ductile Metallic Thin Films. Appl. Phys. Lett. 2000, 77, 343–345. [Google Scholar] [CrossRef]
- Ahn, D.C.; Sofronis, P.; Minich, R. On the Micromechanics of Void Growth by Prismatic-Dislocation Loop Emission. J. Mech. Phys. Solids 2006, 54, 735–755. [Google Scholar] [CrossRef]
- Le Roy, G.; Edwards, G.; Ashby, M.F. A Model of Ductile Fracture Based on the Nucleation and Growth of Voids. Acta Metall. 1981, 29, 1509–1522. [Google Scholar] [CrossRef]
- Pardoen, T.; Delannay, F. On the Coalescence of Voids in Prestrained Notched Round Copper Bars. Fatigue Fract. Eng. Mater. Struct. 1998, 21, 1459–1472. [Google Scholar] [CrossRef]
- Lemaitre, J.; Dufailly, J. Damage Measurements. Eng. Fract. Mech. 1987, 28, 643–661. [Google Scholar] [CrossRef]
- Bonora, N.; Ruggiero, A.; Gentile, D.; de Meo, S. Practical Applicability and Limitations of the Elastic Modulus Degradation Technique for Damage Measurements in Ductile Metals. Strain 2011, 47, 241–254. [Google Scholar] [CrossRef]
- Lio Alves, M.; Yu, J.; Jones, N. On the Elastic Modulus Degradation in Continuum Damage Mechanics. Comput. Struct. 2000, 76, 703–712. [Google Scholar] [CrossRef]
- Guelorget, B.; François, M.; Lu, J. Microindentation as a Local Damage Measurement Technique. Mater. Lett. 2007, 61, 34–36. [Google Scholar] [CrossRef]
- Tasan, C.C.; Hoefnagels, J.P.M.; Geers, M.G.D. Identification of the Continuum Damage Parameter: An Experimental Challenge in Modeling Damage Evolution. Acta Mater. 2012, 60, 3581–3589. [Google Scholar] [CrossRef]
- Nagarajan, A. Ultrasonic Study of Elasticity-Porosity Relationship in Polycrystalline Alumina. J. Appl. Phys. 1971, 42, 3693–3696. [Google Scholar] [CrossRef]
- Jeong, H.; Hsus, D.K. Quantitative Estimation of Material Properties of Porous Ceramics by Means of Composite Micromechanics and Ultrasonic Velocity. NDT&E Int. 1996, 29, 95–101. [Google Scholar]
- Augereau, F.; Roque, V.; Robert, L.; Despaux, G. Non-Destructive Testing by Acoustic Signature of Damage Level in 304L Steel Samples Submitted to Rolling, Tensile Test and Thermal Annealing Treatments. Mater. Sci. Eng. 1999, 266, 285–294. [Google Scholar] [CrossRef]
- Yeh, H.Y.; Cheng, J.H. NDE of Metal Damage: Ultrasonics with a Damage Mechanics Model. Int. J. Solids Struct. 2003, 40, 7285–7298. [Google Scholar] [CrossRef]
- Dattoma, V.; Nobile, R.; Panella, F.W.; Saponaro, A. Real-Time Monitoring of Damage Evolution by Nonlinear Ultrasonic Technique. Procedia Struct. Integr. 2019, 24, 583–592. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Deep Learning Algorithms for Bearing Fault Diagnosticsx—A Comprehensive Review. IEEE Access 2020, 8, 29857–29881. [Google Scholar] [CrossRef]
- Cook, O.; Huang, N.; Smithson, R.; Kube, C.; Beese, A.; Argüelles, A. Ultrasonic Characterization of Porosity in Components Made by Binder Jet Additive Manufacturing. Mater. Eval. 2022, 80, 37–44. [Google Scholar] [CrossRef]
- Foster, D.R.; Dapino, M.J.; Babu, S.S. Elastic Constants of Ultrasonic Additive Manufactured Al 3003-H18. Ultrasonics 2013, 53, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Bacelar, R.; Pires, I.; Santos, T.G.; Sousa, J.P.; Quintino, L. Non-Destructive Testing Application of Radiography and Ultrasound for Wire and Arc Additive Manufacturing. Addit. Manuf. 2018, 21, 298–306. [Google Scholar] [CrossRef]
- Koester, L.W.; Taheri, H.; Bigelow, T.A.; Collins, P.C. Nondestructive Testing for Metal Parts Fabricated Using Powder-Based Additive Manufacturing In-Situ Process Monitoring and NDE for Additive Manufacturing View Project. Mater. Eval. 2018, 76, 514–524. [Google Scholar]
- Ashby, M.F. Work Hardening of Dispersion-Hardened Crystals. Philos. Mag. 1966, 14, 1157–1178. [Google Scholar] [CrossRef]
- Tanaka, K.; Mori, T.; Nakamura, T. Cavity Formation at the Interface of a Spherical Inclusion in a Plastically Deformed Matrix. Philos. Mag. 1970, 21, 267–279. [Google Scholar] [CrossRef]
- Carpenter, S.H.; Higgins, F.P. Sources of Acoustic Emission Generated During the Plastic Deformation of 7075 Aluminum Alloy. Metall. Trans. A 1977, 8, 1629–1632. [Google Scholar] [CrossRef]
- Drozdenko, D.; Bohlen, J.; Yi, S.; Minárik, P.; Chmelík, F.; Dobroň, P. Investigating a Twinning–Detwinning Process in Wrought Mg Alloys by the Acoustic Emission Technique. Acta Mater. 2016, 110, 103–113. [Google Scholar] [CrossRef]
- Richeton, T.; Weiss, J.; Louchet, F. Breakdown of Avalanche Critical Behaviour in Polycrystalline Plasticity. Nat. Mater. 2005, 4, 465–469. [Google Scholar] [CrossRef]
- Vinogradov, A.; Yasnikov, I.S.; Estrin, Y. Stochastic Dislocation Kinetics and Fractal Structures in Deforming Metals Probed by Acoustic Emission and Surface Topography Measurements. J. Appl. Phys. 2014, 115, 233506. [Google Scholar] [CrossRef]
- Kahirdeh, A.; Sauerbrunn, C.; Modarres, M. Acoustic Emission Entropy as a Measure of Damage in Materials. AIP Conf. Proc. 2016, 1757, 060007. [Google Scholar]
- Holford, K.M.; Pullin, R.; Evans, S.L.; Eaton, M.J.; Hensman, J.; Worden, K. Acoustic Emission for Monitoring Aircraft Structures. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2009, 223, 525–532. [Google Scholar] [CrossRef]
- Grondel, Â.; Delebarre, C.; Assaad, J.; Dupuis, J.-P.; Reithler, L. Fatigue Crack Monitoring of Riveted Aluminium Strap Joints by Lamb Wave Analysis and Acoustic Emission Measurement Techniques. NDT&E Int. 2002, 35, 137–146. [Google Scholar]
- Manson, G.; Worden, K.; Holford, K.; Pullin, R. Visualisation and Dimension Reduction of Acoustic Emission Data for Damage Detection. J. Intell. Mater. Syst. Struct. 2001, 12, 529–536. [Google Scholar] [CrossRef]
- Mummery, P.M.; Derby, B.; Scrubyt, C.B. Acoustic emission from particulate-reinforced metal matrix composites. Aeta Metall. Mater. 1993, 41, 1431–1445. [Google Scholar] [CrossRef]
- Rabiei, M.; Modarres, M. Quantitative Methods for Structural Health Management Using in Situ Acoustic Emission Monitoring. Int. J. Fatigue 2013, 49, 81–89. [Google Scholar] [CrossRef]
- Dunegan, H.; Harris, D. Acoustic Emission-a New Nondestructive Testing Tool. Ultrasonics 1969, 7, 160–166. [Google Scholar] [CrossRef]
- Dobroň, P.; Bohlen, J.; Chmelík, F.; Lukáč, P.; Letzig, D.; Kainer, K.U. Acoustic Emission during Stress Relaxation of Pure Magnesium and AZ Magnesium Alloys. Mater. Sci. Eng. A 2007, 462, 307–310. [Google Scholar] [CrossRef]
- Lazarev, A.; Vinogradov, A. About plastic instabilities in iron and power spectrum of acoustic emission. J. Acoust. Emiss. 2009, 27, 144–156. [Google Scholar]
- Scruby, C.; Wadley, H.; Sinclair, J.E. The Origin of Acoustic Emission during Deformation of Aluminium and an Aluminium–Magnesium Alloy. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 1981, 44, 249–274. [Google Scholar] [CrossRef]
- Sedgwick, R.T. Acoustic Emission from Single Crystals of LiF and KCl. J. Appl. Phys. 1968, 39, 1728–1740. [Google Scholar] [CrossRef]
- James, D.R.; Carpenter, S.H. Relationship between Acoustic Emission and Dislocation Kinetics in Crystalline Solids. J. Appl. Phys. 1971, 42, 4685–4697. [Google Scholar] [CrossRef]
- Fisher, R.M.; Lally, J.S. Microplasticity detected by an acoustic technique. Can. J. Phys. 1967, 45, 1147–1159. [Google Scholar] [CrossRef]
- Imanaka, T.; Sano, K.; Shimizu, M. Dislocation Attenuation and Acoustic Emission during Deformation in Copper Single Crystals. Cryst. Lattice Defects 1973, 4, 57–64. [Google Scholar]
- Scruby, C.B.; Wadley, H.N.G.; Rusbridge, K.; Stockham-Jones, D. Influence of Microstructure on Acoustic Emission during Deformation of Aluminium Alloys. Met. Sci. 1981, 15, 599–608. [Google Scholar] [CrossRef]
- Natsik, V.D.; Burkanov, A.N. Radiation of Rayleigh Waves by an Edge Dislocation Emerged on Crystal Surface. Fizika Tverdogo Tela 1972, 14, 1289. [Google Scholar]
- Kiesewetter, N. Acoustic Emission from Moving Dislocations. Scr. Metall. 1974, 8, 249–252. [Google Scholar] [CrossRef]
- Natsik, V.D.; Chishko, K.A. Dynamics and Sound Radiation of Dislocation Frank-Read Source. Fiz. Tverd. 1975, 17, 342–345. [Google Scholar]
- Vinogradov, A.Y.; Merson, D.L. The Nature of Acoustic Emission during Deformation Processes in Metallic Materials. Low Temp. Phys. 2018, 44, 930–937. [Google Scholar] [CrossRef]
- Merson, D.; Nadtochiy, M.; Patlan, V.; Vinogradov, A.; Kitagawa, I.S. On the Role of Free Surface in Acoustic Emission. Mater. Sci. Eng. A 1997, 234–236, 587–590. [Google Scholar] [CrossRef]
- Vinogradov, A.; Yasnikov, I.S.; Merson, D.L. Phenomenological Approach towards Modelling the Acoustic Emission Due to Plastic Deformation in Metals. Scr. Mater. 2019, 170, 172–176. [Google Scholar] [CrossRef]
- Van Liempt, P. Materials Processing Technology Workhardening and Substructural Geometry of Metals. Process. Technol. 1994, 45, 459–464. [Google Scholar] [CrossRef]
- Hollang, L.; Hieckmann, E.; Brunner, D.; Holste, C.; Skrotzki, W. Scaling Effects in the Plasticity of Nickel. Mater. Sci. Eng. A 2006, 424, 138–153. [Google Scholar] [CrossRef]
- Zhao, P.; Sun, Y.; Jiao, J.; Fang, G. Correlation between Acoustic Emission Detection and Microstructural Characterization for Damage Evolution. Eng. Fract. Mech. 2020, 230, 106967. [Google Scholar] [CrossRef]
- Guo, Y.; Schwiedrzik, J.; Michler, J.; Maeder, X. On the Nucleation and Growth of {112¯2} Twin in Commercial Purity Titanium: In Situ Investigation of the Local Stress Field and Dislocation Density Distribution. Acta Mater. 2016, 120, 292–301. [Google Scholar] [CrossRef]
- Pürstl, J.T.; Jones, H.O.; Edwards, T.E.J.; Thompson, R.P.; Di Gioacchino, F.; Jones, N.G.; Clegg, W.J. On the Extraction of Yield Stresses from Micro-Compression Experiments. Mater. Sci. Eng. A 2021, 800, 140323. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Machine-Learning-Based Methods for Acoustic Emission Testing: A Review. Appl. Sci. 2022, 12, 10476. [Google Scholar] [CrossRef]
- Pomponi, E.; Vinogradov, A. A Real-Time Approach to Acoustic Emission Clustering. Mech. Syst. Signal Process. 2013, 40, 791–804. [Google Scholar] [CrossRef]
- Shevchik, S.A.; Kenel, C.; Leinenbach, C.; Wasmer, K. Acoustic Emission for in Situ Quality Monitoring in Additive Manufacturing Using Spectral Convolutional Neural Networks. Addit. Manuf. 2018, 21, 598–604. [Google Scholar] [CrossRef]
- Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; du Plessis, A.; Stock, S.R. X-Ray Computed Tomography. Nat. Rev. Methods Prim. 2021, 1, 18. [Google Scholar] [CrossRef]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical Cone-Beam Algorithm. J. Opt. Soc. Am. A 1984, 1, 612–619. [Google Scholar] [CrossRef]
- Maire, E.; Withers, P.J. Quantitative X-ray Tomography. Int. Mater. Rev. 2014, 59, 1–43. [Google Scholar] [CrossRef]
- Daly, M.; Burnett, T.L.; Pickering, E.J.; Tuck, O.C.G.; Léonard, F.; Kelley, R.; Withers, P.J.; Sherry, A.H. A Multi-Scale Correlative Investigation of Ductile Fracture. Acta Mater. 2017, 130, 56–68. [Google Scholar] [CrossRef]
- Jia, L.-J.; Zhang, R.; Zhou, C.-F.; Gu, T.-Y.; Liu, T.; Xie, J.-B.; He, M.-C.; Xia, M.; Chen, B. In-Situ Three-Dimensional X-ray Investigation on Micro Ductile Fracture Mechanism of a High-Mn Steel with Delayed Necking Effect. J. Mater. Res. Technol. 2023, 24, 1076–1087. [Google Scholar] [CrossRef]
- Depraetere, R.; De Waele, W.; Cauwels, M.; Depover, T.; Verbeken, K.; Boone, M.; Hertelé, S. Influence of Stress Triaxiality on Hydrogen Assisted Ductile Damage in an X70 Pipeline Steel. Mater. Sci. Eng. A 2023, 864, 144549. [Google Scholar] [CrossRef]
- Toda, H.; Takijiri, A.; Azuma, M.; Yabu, S.; Hayashi, K.; Seo, D.; Kobayashi, M.; Hirayama, K.; Takeuchi, A.; Uesugi, K. Damage Micromechanisms in Dual-Phase Steel Investigated with Combined Phase- and Absorption-Contrast Tomography. Acta Mater. 2017, 126, 401–412. [Google Scholar] [CrossRef]
- Ludwig, W.; Reischig, P.; King, A.; Herbig, M.; Lauridsen, E.M.; Johnson, G.; Marrow, T.J.; Buffìre, J.Y. Three-Dimensional Grain Mapping by x-Ray Diffraction Contrast Tomography and the Use of Friedel Pairs in Diffraction Data Analysis. Rev. Sci. Instrum. 2009, 80, 033905. [Google Scholar] [CrossRef]
- Holzner, C.; Lavery, L.; Bale, H.; Merkle, A.; McDonald, S.; Withers, P.; Zhang, Y.; Jensen, D.J.; Kimura, M.; Lyckegaard, A.; et al. Diffraction Contrast Tomography in the Laboratory—Applications and Future Directions. Micros. Today 2016, 24, 34–43. [Google Scholar] [CrossRef]
- Johnson, G.; King, A.; Honnicke, M.G.; Marrow, J.; Ludwig, W. X-Ray Diffraction Contrast Tomography: A Novel Technique for Three-Dimensional Grain Mapping of Polycrystals. II. The Combined Case. J. Appl. Crystallogr. 2008, 41, 310–318. [Google Scholar] [CrossRef]
- Ludwig, W.; Schmidt, S.; Lauridsen, E.M.; Poulsen, H.F. X-Ray Diffraction Contrast Tomography: A Novel Technique for Three-Dimensional Grain Mapping of Polycrystals. I. Direct Beam Case. J. Appl. Crystallogr. 2008, 41, 302–309. [Google Scholar] [CrossRef]
- Guo, Y.; Burnett, T.L.; McDonald, S.A.; Daly, M.; Sherry, A.H.; Withers, P.J. 4D Imaging of Void Nucleation, Growth, and Coalescence from Large and Small Inclusions in Steel under Tensile Deformation. J. Mater. Sci. Technol. 2022, 123, 168–176. [Google Scholar] [CrossRef]
- García-Moreno, F.; Kamm, P.H.; Neu, T.R.; Bülk, F.; Mokso, R.; Schlepütz, C.M.; Stampanoni, M.; Banhart, J. Using X-Ray Tomoscopy to Explore the Dynamics of Foaming Metal. Nat. Commun. 2019, 10, 3762. [Google Scholar] [CrossRef]
- Wilkinson, A.J.; Meaden, G.; Dingley, D.J. High-Resolution Elastic Strain Measurement from Electron Backscatter Diffraction Patterns: New Levels of Sensitivity. Ultramicroscopy 2006, 106, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Di Gioacchino, F.; Quinta da Fonseca, J. Plastic Strain Mapping with Sub-Micron Resolution Using Digital Image Correlation. Exp. Mech. 2013, 53, 743–754. [Google Scholar] [CrossRef]
- Zaefferer, S.; Elhami, N.N. Theory and Application of Electron Channelling Contrast Imaging under Controlled Diffraction Conditions. Acta Mater. 2014, 75, 20–50. [Google Scholar] [CrossRef]
- Nemcko, M.J.; Li, J.; Wilkinson, D.S. Effects of Void Band Orientation and Crystallographic Anisotropy on Void Growth and Coalescence. J. Mech. Phys. Solids 2016, 95, 270–283. [Google Scholar] [CrossRef]
- Vasilev, E.; Knezevic, M. Experimental Characterization of Voids and Surrounding Microstructures Developed under Tension of Mg, Mg–3Zn, and Ti: A Statistical Study. Mater. Sci. Eng. A 2023, 862, 144411. [Google Scholar] [CrossRef]
- Barrioz, P.O.; Hure, J.; Tanguy, B. Effect of Dislocation Channeling on Void Growth to Coalescence in FCC Crystals. Mater. Sci. Eng. A 2019, 749, 255–270. [Google Scholar] [CrossRef]
- Wciślik, W.; Pała, R. Some Microstructural Aspects of Ductile Fracture of Metals. Materials 2021, 14, 4321. [Google Scholar] [CrossRef]
- Pathak, N.; Adrien, J.; Butcher, C.; Maire, E.; Worswick, M. Experimental Stress State-Dependent Void Nucleation Behavior for Advanced High Strength Steels. Int. J. Mech. Sci. 2020, 179, 105661. [Google Scholar] [CrossRef]
- Bonora, N.; Testa, G.; Ruggiero, A.; Iannitti, G.; Gentile, D. Continuum Damage Mechanics Modelling Incorporating Stress Triaxiality Effect on Ductile Damage Initiation. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 1755–1768. [Google Scholar] [CrossRef]
- Patra, A.; McDowell, D.L. A Void Nucleation and Growth Based Damage Framework to Model Failure Initiation Ahead of a Sharp Notch in Irradiated Bcc Materials. J. Mech. Phys. Solids 2015, 74, 111–135. [Google Scholar] [CrossRef]
- McClintock, F.A. A Criterion for Ductile Fracture by the Growth of Holes. J. Appl. Mech. 1968, 35, 363–371. [Google Scholar] [CrossRef]
- Rice, J.R.; Tracey, D.M. On the Ductile Enlargement of Voids in Triaxial Stress Fields. J. Mech. Phys. Solids 1969, 17, 201–217. [Google Scholar] [CrossRef]
- Tvergaard, V. Material Failure by Void Growth to Coalescence. Adv. Appl. Mech. 1989, 27, 83–151. [Google Scholar] [CrossRef]
- Tvergaard, V. On Localization in Ductile Materials Containing Spherical Voids. Int. J. Fract. 1982, 18, 237–252. [Google Scholar] [CrossRef]
- Chu, C.C.; Needleman, A. Void Nucleation Effects in Biaxially Stretched Sheets. J. Eng. Mater. Technol. 1980, 102, 249–256. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, G.; Li, S.; Sheng, W.; Zhang, C. Numerical Modelling of Ductile Fracture in Steel Plates with Non-Ordinary State-Based Peridynamics. Eng. Fract. Mech. 2020, 225, 106446. [Google Scholar] [CrossRef]
- Lee, H.W.; Basaran, C. A Review of Damage, Void Evolution, and Fatigue Life Prediction Models. Metals 2021, 11, 609. [Google Scholar] [CrossRef]
- Benzerga, A.A.; Leblond, J.-B. Ductile Fracture by Void Growth to Coalescence. Adv. Appl. Mech. 2010, 44, 169–305. [Google Scholar] [CrossRef]
- Aldakheel, F.; Wriggers, P.; Miehe, C. A Modified Gurson-Type Plasticity Model at Finite Strains: Formulation, Numerical Analysis and Phase-Field Coupling. Comput. Mech. 2018, 62, 815–833. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Pang, W.W.; Zhang, P.; Zhang, G.C.; Xu, A.G.; Zhao, X.G. Dislocation Creation and Void Nucleation in FCC Ductile Metals under Tensile Loading: A General Microscopic Picture. Sci. Rep. 2014, 4, 6981. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, G.; Dongare, A.M. Defect and Damage Evolution during Spallation of Single Crystal Al: Comparison between Molecular Dynamics and Quasi-Coarse-Grained Dynamics Simulations. Comput. Mater. Sci. 2018, 145, 68–79. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Z. Void Initiation from Interfacial Debonding of Spherical Silicon Particles inside a Silicon-Copper Nanocomposite: A Molecular Dynamics Study. Model. Simul. Mat. Sci. Eng. 2017, 25, 025007. [Google Scholar] [CrossRef]
- Pogorelko, V.V.; Mayer, A.E. Influence of Copper Inclusions on the Strength of Aluminum Matrix at High-Rate Tension. Mater. Sci. Eng. A 2015, 642, 351–359. [Google Scholar] [CrossRef]
- Pogorelko, V.V.; Mayer, A.E. Influence of Titanium and Magnesium Nanoinclusions on the Strength of Aluminum at High-Rate Tension: Molecular Dynamics Simulations. Mater. Sci. Eng. A 2016, 662, 227–240. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Boyce, B.L.; Sills, R.B. Micromechanics of Void Nucleation and Early Growth at Incoherent Precipitates: Lattice-Trapped and Dislocation-Mediated Delamination Modes. Crystals 2021, 11, 45. [Google Scholar] [CrossRef]
- Paul, S.K.; Kumar, S.; Tarafder, S. Effect of Loading Conditions on Nucleation of Nano Void and Failure of Nanocrystalline Aluminum: An Atomistic Investigation. Eng. Fract. Mech. 2017, 176, 257–262. [Google Scholar] [CrossRef]
- Traiviratana, S.; Bringa, E.M.; Benson, D.J.; Meyers, M.A. Void Growth in Metals: Atomistic Calculations. Acta Mater. 2008, 56, 3874–3886. [Google Scholar] [CrossRef]
- Tang, T.; Kim, S.; Horstemeyer, M.F. Molecular Dynamics Simulations of Void Growth and Coalescence in Single Crystal Magnesium. Acta Mater. 2010, 58, 4742–4759. [Google Scholar] [CrossRef]
- Mi, C.; Buttry, D.A.; Sharma, P.; Kouris, D.A. Atomistic Insights into Dislocation-Based Mechanisms of Void Growth and Coalescence. J. Mech. Phys. Solids 2011, 59, 1858–1871. [Google Scholar] [CrossRef]
- Deng, Q.-Q.; Gao, Y.-J.; Liu, Z.-Y.; Huang, Z.-J.; Li, Y.-X.; Luo, Z.-R. Atomistic Simulation of Void Growth by Emitting Dislocation Pair during Deformation. Phys. B Condens. Matter. 2020, 578, 411767. [Google Scholar] [CrossRef]
- Xu, S.Z.; Hao, Z.M.; Su, Y.Q.; Yu, Y.; Wan, Q.; Hu, W.J. An Analysis on Nanovoid Growth in Body-Centered Cubic Single Crystalline Vanadium. Comput. Mater. Sci. 2011, 50, 2411–2421. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y. Investigation on Void Growth and Coalescence in Single Crystal Copper under High-Strain-Rate Tensile Loading by Atomistic Simulation. Mech. Mater. 2020, 151, 103615. [Google Scholar] [CrossRef]
- Wang, J.P.; Liang, J.W.; Wen, Z.X.; Yue, Z.F. Atomic Simulation of Void Location Effect on the Void Growth in Nickel-Based Single Crystal. Comput. Mater. Sci. 2019, 160, 245–255. [Google Scholar] [CrossRef]
- Tang, Y.; Bringa, E.M.; Remington, B.A.; Meyers, M.A. Growth and Collapse of Nanovoids in Tantalum Monocrystals. Acta Mater. 2011, 59, 1354–1372. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Zhu, X.; Zhao, Y. Dislocation Mechanism of Void Growth at Twin Boundary of Nanotwinned Nickel Based on Molecular Dynamics Simulation. Phys. Lett. A 2016, 380, 2757–2761. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, X.; Feng, M. Effect of Void Defect on C-Axis Deformation of Single-Crystal Ti under Uniaxial Stress Conditions: Evolution of Tension Twinning and Dislocations. J. Mater. Res. 2019, 34, 3699–3706. [Google Scholar] [CrossRef]
- Xu, X.-T.; Tang, F.-L.; Xue, H.-T.; Yu, W.-Y.; Zhu, L.; Rui, Z.-Y. Molecular Dynamics Simulations of Void Shrinkage in γ-TiAl Single Crystal. Comput. Mater. Sci. 2015, 107, 58–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Zhu, X.; Zhao, Y. Influence of Void Density on Dislocation Mechanisms of Void Shrinkage in Nickel Single Crystal Based on Molecular Dynamics Simulation. Phys. E Low Dimens. Syst. Nanostruct. 2017, 90, 90–97. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, X.; Wang, J.; Wang, J.; Wang, F.; Ding, J. Atomic-Scale Modeling of the Void Nucleation, Growth, and Coalescence in Al at High Strain Rates. Mech. Mater. 2019, 135, 98–113. [Google Scholar] [CrossRef]
- Rawat, S.; Raole, P.M. Molecular Dynamics Investigation of Void Evolution Dynamics in Single Crystal Iron at Extreme Strain Rates. Comput. Mater. Sci. 2018, 154, 393–404. [Google Scholar] [CrossRef]
- Potirniche, G.P.; Horstemeyer, M.F.; Wagner, G.J.; Gullett, P.M. A Molecular Dynamics Study of Void Growth and Coalescence in Single Crystal Nickel. Int. J. Plast. 2006, 22, 257–278. [Google Scholar] [CrossRef]
- Liu, B.; Qiu, X.; Huang, Y.; Hwang, K.C.; Li, M.; Liu, C. The Size Effect on Void Growth in Ductile Materials. J. Mech. Phys. Solids 2003, 51, 1171–1187. [Google Scholar] [CrossRef]
- Li, Z.; Steinmann, P. RVE-Based Studies on the Coupled Effects of Void Size and Void Shape on Yield Behavior and Void Growth at Micron Scales. Int. J. Plast. 2006, 22, 1195–1216. [Google Scholar] [CrossRef]
- Segurado, J.; Llorca, J. An Analysis of the Size Effect on Void Growth in Single Crystals Using Discrete Dislocation Dynamics. Acta Mater. 2009, 57, 1427–1436. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, C.; Meng, Z.; Wang, K.; Chen, L.; Ji, Z.; Zhao, G. Coupled Crystal Plasticity and Micromechanics Damage Model Based on Viscoplastic Self-Consistent Theory and x-Ray Computed Tomography. Int. J. Plast. 2023, 160, 103511. [Google Scholar] [CrossRef]
- Ha, S.; Kim, K. Void Growth and Coalescence in f.c.c. Single Crystals. Int. J. Mech. Sci. 2010, 52, 863–873. [Google Scholar] [CrossRef]
- Liu, J.; Huang, M.; Li, Z.; Zhao, L.; Zhu, Y. Microvoid Growth Mechanism in FCC Polycrystals and a Statistical Damage Model. Int. J. Plast. 2021, 137, 102888. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, J.; Huang, M.; Li, Z.; Zhao, L. Investigation on Intragranular and Intergranular Void Growth and Their Competition in Polycrystalline Materials. Int. J. Plast. 2022, 159, 103472. [Google Scholar] [CrossRef]
- Liu, W.H.; He, Z.T.; Tang, J.G.; Hu, Z.J.; Cui, D.T. The Effects of Load Condition on Void Coalescence in FCC Single Crystals. Comput. Mater. Sci. 2012, 60, 66–74. [Google Scholar] [CrossRef]
- Christodoulou, P.G.; Dancette, S.; Lebensohn, R.A.; Maire, E.; Beyerlein, I.J. Role of Crystallographic Orientation on Intragranular Void Growth in Polycrystalline FCC Materials. Int. J. Plast. 2021, 147, 103104. [Google Scholar] [CrossRef]
- Jeong, W.; Lee, C.H.; Moon, J.; Jang, D.; Lee, M.G. Grain Scale Representative Volume Element Simulation to Investigate the Effect of Crystal Orientation on Void Growth in Single and Multi-Crystals. Metals 2018, 8, 436. [Google Scholar] [CrossRef]
- Guo, H.J.; Li, D.F. Crystal Plasticity-Based Micromechanical Finite Element Modelling of Ductile Void Growth for an Aluminium Alloy under Multiaxial Loading Conditions. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 52–62. [Google Scholar] [CrossRef]
- Dakshinamurthy, M.; Kowalczyk-Gajewska, K.; Vadillo, G. Influence of Crystallographic Orientation on the Void Growth at the Grain Boundaries in Bi-Crystals. Int. J. Solids Struct. 2021, 212, 61–79. [Google Scholar] [CrossRef]
- Asim, U.; Siddiq, M.A.; Demiral, M. Void Growth in High Strength Aluminium Alloy Single Crystals: A CPFEM Based Study. Model. Simul. Mat. Sci. Eng. 2017, 25, 035010. [Google Scholar] [CrossRef]
- Guo, H.J.; Ling, C.; Busso, E.P.; Zhong, Z.; Li, D.F. Crystal Plasticity Based Investigation of Micro-Void Evolution under Multi-Axial Loading Conditions. Int. J. Plast. 2020, 129, 102673. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Tang, J. Study on the Growth Behavior of Voids Located at the Grain Boundary. Mech. Mater. 2009, 41, 799–809. [Google Scholar] [CrossRef]
- Pushkareva, M.; Sket, F.; Segurado, J.; Llorca, J.; Yandouzi, M.; Weck, A. Effect of Grain Orientation and Local Strains on Void Growth and Coalescence in Titanium. Mater. Sci. Eng. A 2019, 760, 258–266. [Google Scholar] [CrossRef]
- Zhu, J.C.; Bettaieb, M.B.; Abed-Meraim, F.; Huang, M.S.; Li, Z.H. Coupled Effects of Crystallographic Orientation and Void Shape on Ductile Failure Initiation Using a CPFE Framework. Eng. Fract. Mech. 2023, 280, 109121. [Google Scholar] [CrossRef]
- Asim, U.B.; Siddiq, M.A.; Kartal, M.E. A CPFEM Based Study to Understand the Void Growth in High Strength Dual-Phase Titanium Alloy (Ti-10V-2Fe-3Al). Int. J. Plast. 2019, 122, 188–211. [Google Scholar] [CrossRef]
- Selvarajou, B.; Joshi, S.P.; Benzerga, A.A. Void Growth and Coalescence in Hexagonal Close Packed Crystals. J. Mech. Phys. Solids 2019, 125, 198–224. [Google Scholar] [CrossRef]
- Jung, J.; Lefeld-sosnowska, M. High-Pressure-Induced Defect Formation in Silicon Single Crystals I. Characterization of Defects and Conditions of Their Creation. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 1985, 50, 233–255. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Lowhaphandu, P. Effects of Hydrostatic Pressure on Mechanical Behaviour and Deformation Processing of Materials. Int. Mater. Rev. 1998, 43, 145–187. [Google Scholar] [CrossRef]
- Bridgman, P.W. The Effect of Hydrostatic Pressure on the Fracture of Brittle Substances. J. Appl. Phys. 1947, 18, 246–258. [Google Scholar] [CrossRef]
- Bridgman, P.W. The Effect of Pressure on the Tensile Properties of Several Metals and Other Materials. J. Appl. Phys. 1953, 24, 560–570. [Google Scholar] [CrossRef]
- Spitzig, W.A.; Richmond, O. The Effect of Pressure on the Flow Stress of Metals. Acta Metall. 1984, 32, 457–463. [Google Scholar] [CrossRef]
- Spitzig, W.A.; Sober, R.J.; Richmond, O. The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 Steels and Its Implications for Plasticity Theory. Metall. Trans. A 1976, 7, 1703–1710. [Google Scholar] [CrossRef]
- Jung, J. A Note on the Influence of Hydrostatic Pressure on Dislocations. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 1981, 43, 1057–1061. [Google Scholar] [CrossRef]
- Pines, B.Y.; Syrenko, A.F. Change of Dislocation Density in Aluminium and Lithium Fluoride after Annealing near the Melting Point under Hydrostatic Pressure. J. Mater. Sci. 1968, 3, 80–88. [Google Scholar] [CrossRef]
- Bulatov, V.V.; Richmond, O.; Glazov, M. V An Atomistic Dislocation Mechanism of Pressure-Dependent Plastic Flow in Aluminum. Acta Mater. 1999, 47, 3507–3514. [Google Scholar] [CrossRef]
- Ohashi, T. Generation and Accumulation of Atomic Vacancies Due to Dislocation Movement and Pair Annihilation. Philos. Mag. 2018, 98, 2275–2295. [Google Scholar] [CrossRef]
- Couch, W.E.; Swartz, J.C. The Dilatation of Dislocation Kinks and Jogs. Philos. Mag. 1962, 7, 1231–1238. [Google Scholar] [CrossRef]
- Frafjord, J.; Ringdalen, I.G.; Hopperstad, O.S.; Holmestad, R.; Friis, J. First Principle Calculations of Pressure Dependent Yielding in Solute Strengthened Aluminium Alloys. Comput. Mater. Sci. 2020, 184, 109902. [Google Scholar] [CrossRef]
- Ashby, M.F.; Verrall, R.A. Micromechanisms of Flow and Fracture, and Their Relevance to the Theology of the Upper Mantle. Phil. Trans. R. Soc. Lond. A 1977, 288, 59–95. [Google Scholar]
- Shmatov, V.T. Lattice Resistance to Dislocation Motion under Hydrostatic Pressure. Phys. Met. Metallogr. 1973, 35, 47–55. [Google Scholar]
- Brown, J.L.; Prime, M.B.; Barton, N.R.; Luscher, D.J.; Burakovsky, L.; Orlikowski, D. Experimental Evaluation of Shear Modulus Scaling of Dynamic Strength at Extreme Pressures. J. Appl. Phys. 2020, 128, 045901. [Google Scholar] [CrossRef]
- Prime, M.B.; Arsenlis, A.; Austin, R.A.; Barton, N.R.; Battaile, C.C.; Brown, J.L.; Burakovsky, L.; Buttler, W.T.; Chen, S.R.; Dattelbaum, D.M.; et al. A Broad Study of Tantalum Strength from Ambient to Extreme Conditions. Acta Mater. 2022, 231, 117875. [Google Scholar] [CrossRef]
- Auger, J.P.; Francois, D. Variation of Fracture Toughness of a 7075 Aluminium Alloy with Hydrostatic Pressure and Relationship with Tensile Ductility. Int. J. Fract. 1977, 13, 431–441. [Google Scholar] [CrossRef]
- Spitzig, W.A.; Sober, R.J.; Richmond, O. Pressure Dependence of Yielding and Associated Volume Expansion in Tempered Martensite. Acta Metall. 1975, 23, 885–893. [Google Scholar] [CrossRef]
- Yajima, M.; Ishii, M. The Effect of Hydrostatic Pressure on Yielding in Iron. Trans. ISIJ 1967, 7, 45–52. [Google Scholar] [CrossRef]
- Margevicius, R.W.; Lewandowski, J.J.; Locci, I. The Decrease in Yield Strength in NiAl Due to Hydrostatic Pressure. Scr. Metall. Mater. 1992, 26, 1733–1736. [Google Scholar] [CrossRef]
- Margevicius, R.W.; Lewandowski, J.J. The Effects of Hydrostatic Pressure on the Mechanical Behaviour of NiAl. Scr. Metall. 1991, 25, 2017–2022. [Google Scholar] [CrossRef]
- Weaver, M.L.; Noebe, R.; Lewandowski, J.J.; Oliver, B.F.; Kaufman, M. The Effects of Interstitial Content, Heat Treatment, and Prestrain on the Tensile Properties of NiAl. Mater. Sci. Eng. A 1995, 192–193, 179–185. [Google Scholar] [CrossRef]
- Ashby, M.F.; Gelles, S.H.; Tanner, L.E. The Stress at Which Dislocations Are Generated at a Particle-Matrix Interface. Philos. Mag. 1969, 19, 757–771. [Google Scholar] [CrossRef]
- Mott, N.F.; Nabarro, F.R.N. An Attempt to Estimate the Degree of Precipitation Hardening, with a Simple Model. Proc. Phys. Soc. 1940, 52, 86–89. [Google Scholar] [CrossRef]
- Liu, D.-S. The Effects of Superimposed Pressure on the Deformation and Fracture of Metal-Matrix Composites; Case Western Reserve University: Cleveland, OH, USA, 1991. [Google Scholar]
- Vasudevan, A.K.; Richmond, O. The Influence of Hydrostatic Pressure on the Ductility of Al-SiC Composites. Mater. Sci. Eng. 1989, A107, 63–69. [Google Scholar] [CrossRef]
- Sakamoto, H.; Iizuka, T. FEM Analysis on Fundamental Relationship between Hydrostatic Stress and Strain Obtained from Uniaxial Tensile Test Using Axially Symmetric Tapered Specimen. In Proceedings of the XIV International Conference on Computational Plasticity: Fundamentals and Applications, Barcelona, Spain, 5–7 September 2017; Onate, E., Owen, D.R.J., Peric, D., Chiumenti, M., Eds.; CIMNE: Barcelona, Spain, 2017; pp. 5–7. [Google Scholar]
- Thomason, P.F. Ductile Fracture of Metals; Pergamon Press: New York, NY, USA, 1990. [Google Scholar]
- Brown, L.M.; Stobbs, W.M. The Work-Hardening of Copper-Silica v. Equilibrium Plastic Relaxation by Secondary Dislocations. Philos. Mag. 1976, 34, 351–372. [Google Scholar] [CrossRef]
- Argon, A.S.; Im, J.; Safoglu, R. Cavity Formation from Inclusions Inductile Fracture. Metall. Trans. A 1975, 6, 825–837. [Google Scholar] [CrossRef]
- French, I.E.; Weinrich, P.F. The Effect of Hydrostatic Pressure on the Tensile Fracture of α-Brass. Acta Metall. 1973, 21, 1533–1537. [Google Scholar] [CrossRef]
- Gonzalez, C.; Llorca, J. An Analysis of the Effect of Hydrostatic Pressure on the Tensile Deformation of Aluminium-Matrix Composites. Mater. Sci. Eng. A 2003, 341, 256–263. [Google Scholar] [CrossRef]
- Liu, D.S.; Lewandowski, J.J. The Effects of Superimposed Hydrostatic Pressure on Deformation and Fracture: Part II. Particulate-Reinforced 6061 Composites. Metall. Trans. A 1993, 24, 609–615. [Google Scholar] [CrossRef]
- Liu, D.S.; Manoharan, M.; Lewandowski, J.J. Matrix Effects on the Ductility of Aluminium-Based Composites Deformed under Hydrostatic Pressure. J. Mater. Sci. Lett. 1989, 8, 1447–1448. [Google Scholar] [CrossRef]
- Lahaie, D.J.; Embury, J. Hydrostatic Extrusion of Metal Matrix Composites. J. Compos. Mater. 2003, 37, 1589–1599. [Google Scholar] [CrossRef]
- Lee, M.-G.; Korkolis, Y.P.; Kim, J.H. Recent Developments in Hydroforming Technology. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2015, 229, 572–596. [Google Scholar] [CrossRef]
- Zok, F.; Embury, J. Forming of Low-Ductility Materials under Hydrostatic Pressure. J. Mater. Shap. Technol. 1990, 8, 77–81. [Google Scholar] [CrossRef]
- Ashby, M.F. The Deformation of Plastically Non-Homogeneous Materials. Philos. Mag. 1970, 21, 399–424. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Paramatmuni, C.; Avcu, E. Void Nucleation and Growth from Heterophases and the Exploitation of New Toughening Mechanisms in Metals. Crystals 2023, 13, 860. https://doi.org/10.3390/cryst13060860
Guo Y, Paramatmuni C, Avcu E. Void Nucleation and Growth from Heterophases and the Exploitation of New Toughening Mechanisms in Metals. Crystals. 2023; 13(6):860. https://doi.org/10.3390/cryst13060860
Chicago/Turabian StyleGuo, Yi, Chaitanya Paramatmuni, and Egemen Avcu. 2023. "Void Nucleation and Growth from Heterophases and the Exploitation of New Toughening Mechanisms in Metals" Crystals 13, no. 6: 860. https://doi.org/10.3390/cryst13060860
APA StyleGuo, Y., Paramatmuni, C., & Avcu, E. (2023). Void Nucleation and Growth from Heterophases and the Exploitation of New Toughening Mechanisms in Metals. Crystals, 13(6), 860. https://doi.org/10.3390/cryst13060860