Application of Co3O4 in Photoelectrocatalytic Treatment of Wastewater Polluted with Organic Compounds: A Review
Abstract
:1. Introduction
2. Co3O4: Synthesis Routes
2.1. Hydrothermal
2.2. Sol–Gel
2.3. Vapor Deposition Method
2.4. Green Synthesis
3. Crystal Structure Analysis of Co3O4 Samples
4. Co3O4: Composites
5. Photoelectrocatalytic Application of Co3O4 Composites in Water Treatment
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wazir, M.B.; Daud, M.; Ali, F.; Al-Harthi, M. Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. J. Mol. Liq. 2020, 315, 113775. [Google Scholar] [CrossRef]
- Crini, G.L.E.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Ternes, T.A. Occurrence of drugs in german sewage treatment plants and rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Gani, K.M.; Kazmi, A.A. Evaluation of three full scale sewage treatment plants for occurrence and removal efficacy of priority phthalates. J. Environ. Chem. Eng. 2016, 4, 2628–2636. [Google Scholar] [CrossRef]
- Ignatev, A.; Ngumba, E.; Kosunen, P.; Tuhkanen, T. Removal of selected antibiotics and antiretroviral drugs from water by ozonation and ozone-based AOPs. In Proceedings of the 15th EuCheMS International Conference on Chemistry and the Environment, Leipzig, Germany, 20–24 September 2015. [Google Scholar]
- Körbahti, B.; Aktaş, N.; Tanyolaç, A. Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology. J. Hazard. Mater. 2007, 148, 83–90. [Google Scholar] [CrossRef]
- Hameed, B.H.; Akpan, U.G.; Wee, K.P. Photocatalytic degradation of acid red 1 dye using zno catalyst in the presence and absence of silver. Desalin. Water Treat. 2011, 27, 204–209. [Google Scholar] [CrossRef]
- Arslan-Alaton, I. Degradation of a commercial textile biocide with advanced oxidation processes and ozone. J. Environ. Manag. 2007, 82, 145–154. [Google Scholar] [CrossRef]
- Rivas, F.J.; Beltran, F.J.; Encinas, A. Removal of emergent contaminants: Integration of ozone and photocatalysis. J. Environ. Manag. 2012, 100, 10–15. [Google Scholar] [CrossRef]
- Reddy, P.; Kim, K.H. A review of photochemical approaches for the treatment of a wide range of pesticides. J. Hazard. Mater. 2015, 285, 325–335. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef]
- Korotta-Gamage, S.M.; Sathasivan, A. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere 2017, 167, 120–138. [Google Scholar] [CrossRef] [PubMed]
- Wacławek, S.; Silvestri, D.; Hrabák, P.; Padil, V.V.; Torres-Mendieta, R.; Wacławek, M.; Dionysiou, D.D. Chemical oxidation and reduction of hexachlorocyclohexanes: A review. Water Res. 2019, 162, 302–319. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Talaei, M.R.; Rezania, S. An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater. J. Environ. Chem. Eng. 2017, 5, 1828–1842. [Google Scholar] [CrossRef]
- Chan, S.; Yeong, W.; Juan, J. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Orge, C.A.; Faria, J.L.; Pereira, M.F.R. Photocatalytic ozonation of aniline with tio2-carbon composite materials. J. Environ. Manag. 2016, 195, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Peng, C. Treatment of textile wastewater by electrochemical method. Water Res. 1994, 28, 277–282. [Google Scholar] [CrossRef]
- Changotra, R.; Rajput, H.; Dhir, A. Natural soil mediated photo fenton-like processes in treatment of pharmaceuticals: Batch and continuous approach. Chemosphere 2017, 188, 345–353. [Google Scholar] [CrossRef]
- Babu, V.J.; Sireesha, M.; Bhavatharini, R.S.R.; Ramakrishna, S. Electrospun biobr lamellae for efficient photocatalysis on ars dye degradation. Mater. Lett. 2016, 169, 50–53. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Fouad, O.A. Synthesis and application of ZiNC/TiN oxide nanostructures in photocatalysis and dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 2015, 136, 38–43. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, R.; Fu, Y.; Li, R.; Yao, J.; Jiang, S. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation. Appl. Surf. Sci. 2016, 369, 1–10. [Google Scholar] [CrossRef]
- Ahern, J.C.; Fairchild, R.; Thomas, J.S.; Carr, J.; Patterson, H.H. Characterization of biox compounds as photocatalysts for the degradation of pharmaceuticals in water. Appl. Catal. B 2015, 179, 229–238. [Google Scholar] [CrossRef]
- Fathinia, M.; Khataee, A.; Naseri, A.; Aber, S. Monitoring simultaneous photocatalytic-ozonation of mixture of pharmaceuticals in the presence of immobilized TiO2 nanoparticles using mcr-als: Identification of intermediates and multi-response optimization approach. Spectrochim. Acta Part A 2015, 136, 1275–1290. [Google Scholar] [CrossRef]
- He, Y.; Sutton, N.B.; Rijnaarts, H.; Langenhoff, A. Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Appl. Catal. B 2016, 182, 132–141. [Google Scholar] [CrossRef]
- Maeng, S.K.; Cho, K.; Jeong, B.; Lee, J.; Lee, Y.; Lee, C.; Choi, K.J.; Hong, S.W. Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: The effects of ph and dissolved organic matter characteristics. Water Res. 2015, 86, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Naraginti, S.; Li, Y.; Wu, Y.; Zhang, C.; Upreti, A.R. Mechanistic study of visible light driven photocatalytic degradation of EDC 17α-ethinyl estradiol and azo dye Acid Black-52: Phytotoxicity assessment of intermediates. RSC Adv. 2016, 6, 87246–87257. [Google Scholar] [CrossRef]
- Hu, Z.; Hao, L.; Quan, F.; Guo, R. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2022, 12, 436–461. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Brillas, E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C 2017, 31, 1–35. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Vinodgopal, K.; Hotchandani, S.; Kamat, P.V. Electrochemically assisted photocatalysis: Titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J. Phys. Chem. 1993, 97, 9040–9044. [Google Scholar] [CrossRef]
- Kondalkar, V.V.; Mali, S.S.; Mane, R.M.; Dandge, P.B.; Choudhury, S.; Hong, C.K.; Bhosale, P.N. Photoelectrocatalysis of cefotaxime using nanostructured TiO2 photoanode: Identification of the degradation products and determination of the toxicity level. Ind. Eng. Chem. Res. 2014, 53, 18152–18162. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, K.; Han, J.; Li, Y.; Cui, T.; Wang, B.; Zhou, C. Dendritic TiO2/ln2S3/AgInS2 trilaminar core–shell branched nanoarrays and the enhanced activity for photoelectrochemical water splitting. Small Mol. 2014, 10, 3153–3161. [Google Scholar] [CrossRef]
- Li, L.; Xiao, S.; Li, R.; Cao, Y.; Chen, Y.; Li, Z.; Li, H. Nanotube array-like WO3 photoanode with dual-layer oxygen-evolution cocatalysts for photoelectrocatalytic overall water splitting. ACS Appl. Energy Mater. 2018, 1, 6871–6880. [Google Scholar] [CrossRef]
- Cong, Y.; Ge, Y.; Zhang, T.; Wang, Q.; Shao, M.; Zhang, Y. Fabrication of Z-scheme Fe2O3–MoS2–Cu2O ternary nanofilm with significantly enhanced photoelectrocatalytic performance. Ind. Eng. Chem. Res. 2018, 57, 881–890. [Google Scholar] [CrossRef]
- Yang, R.; Ji, Y.; Li, Q.; Zhao, Z.; Zhang, R.; Liang, L.; Liu, H. Ultrafine Si nanowires/Sn3O4 nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance. Appl. Catal. B 2019, 256, 117798. [Google Scholar] [CrossRef]
- Pan, Y.; Ren, H.; Du, H.; Cao, F.; Jiang, Y.; Du, H.; Chu, D. Active site engineering by surface sulfurization for a highly efficient oxygen evolution reaction: A case study of Co3O4 electrocatalysts. J. Mater. Chem. A 2018, 6, 22497–22502. [Google Scholar] [CrossRef]
- Khalily, M.A.; Patil, B.; Yilmaz, E.; Uyar, T. Atomic layer deposition of Co3O4 nanocrystals on N-doped electrospun carbon nanofibers for oxygen reduction and oxygen evolution reactions. Nanoscale Adv. 2019, 1, 1224–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepit, M.; Paidi, V.K.; Roberts, C.A.; Van Lierop, J. Competing ferro-and antiferromagnetic exchange drives shape-selective Co3O4 nanomagnetism. Sci. Rep. 2020, 10, 20990. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Cui, X.; Dastafkan, K.; Wang, H.F.; Tang, C.; Zhao, C.; Zhang, Q. Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. J. Energy Chem. 2021, 53, 290–302. [Google Scholar] [CrossRef]
- Mathankumar, M.; Anantharaj, S.; Nandakumar, A.K.; Kundu, S.; Subramanian, B. Potentiostatic phase formation of β-CoOOH on pulsed laser deposited biphasic cobalt oxide thin film for enhanced oxygen evolution. J. Mater. Chem. A 2017, 5, 23053–23066. [Google Scholar] [CrossRef]
- Banerjee, S.; Debata, S.; Madhuri, R.; Sharma, P.K. Electrocatalytic behavior of transition metal (Ni, Fe, Cr) doped metal oxide nanocomposites for oxygen evolution reaction. Appl. Surf. Sci. 2018, 449, 660–668. [Google Scholar] [CrossRef]
- Hong, T.; Liu, Z.; Zheng, X.; Zhang, J.; Yan, L. Efficient photoelectrochemical water splitting over Co3O4 and Co3O4/Ag composite structure. Appl. Catal. B 2017, 202, 454–459. [Google Scholar] [CrossRef]
- Dhiman, S.; Gupta, B. Co3O4 nanoparticles synthesized from waste li-ion batteries as photocatalyst for degradation of methyl blue dye. Environ. Technol. Innov. 2021, 1222, 101765. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Ge, R.; Ren, X.; Ren, J.; Yang, D.; Sun, X. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241. [Google Scholar] [CrossRef]
- Li, H.; Jian, L.; Chen, Y.; Wang, G.; Lyu, J.; Dong, X.; Ma, H. Fabricating Bi2MoO6@ Co3O4 core-shell heterogeneous architectures with Z-scheme for superior photoelectrocatalytic water purification. Chem. Eng. J. 2022, 427, 131716. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, Z.; Fang, L.; Xu, H.; Zhang, H.; Gu, X.; Wang, Y. Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 27736–27744. [Google Scholar] [CrossRef]
- Gao, C.; Meng, Q.; Zhao, K.; Yin, H.; Wang, D.; Guo, J.; Tang, Z. Co3O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO2. Adv. Mater. 2016, 28, 6485–6490. [Google Scholar] [CrossRef]
- Faisal, F.; Stumm, C.; Bertram, M.; Waidhas, F.; Lykhach, Y.; Cherevko, S.; Libuda, J. Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nat. Mater. 2018, 17, 592–598. [Google Scholar] [CrossRef]
- Liao, P.; Keith, J.A.; Carter, E.A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 2012, 134, 13296–13309. [Google Scholar] [CrossRef]
- Elakkiya, R.; Maduraiveeran, G. Two-dimensional earth-abundant transition metal oxides nanomaterials: Synthesis and application in electrochemical oxygen evolution reaction. Langmuir 2020, 36, 4728–4736. [Google Scholar] [CrossRef]
- Yang, H.; Sun, H.; Fan, X.; Wang, X.; Yang, Q.; Lai, X. Hollow Co3O4 dodecahedrons with controlled crystal orientation and oxygen vacancies for the high performance oxygen evolution reaction. Mater. Chem. Front. 2021, 5, 259–267. [Google Scholar] [CrossRef]
- Yan, K.; Chi, J.; Xie, J.; Dong, B.; Liu, Z.; Gao, W.K.; Lin, J.H.; Chai, Y.M.; Liu, C.G. Mesoporous ag-doped Co3O4 nanowire arrays supported on fto as efficient electrocatalysts for oxygen evolution reaction in acidic media. Renew. Energy 2018, 119, 54–61. [Google Scholar] [CrossRef]
- Li, S.; Hao, X.; Abudula, A.; Guan, G. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: Current status and perspectives. J. Mater. Chem. A 2019, 7, 18674–18707. [Google Scholar] [CrossRef]
- Barreca, D.; Massignan, C.; Daolio, S.; Fabrizio, M.; Piccirillo, C.; Armelao, L.; Tondello, E. Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(ii) precursor by chemical vapor deposition. Chem. Mater. 2001, 13, 588–593. [Google Scholar] [CrossRef]
- Priyadharshini, T.; Saravanakumar, B.; Ravi, G.; Sakunthala, A.; Yuvakkumar, R. Hexamine role on pseudocapacitive behaviour of cobalt oxide (Co3O4) nanopowders. J. Nanosci. Nanotechnol. 2018, 18, 4093–4099. [Google Scholar] [CrossRef] [PubMed]
- Athar, T.; Hakeem, A.; Topnani, N.; Hashmi, A. Wet synthesis of monodisperse cobalt oxide nanoparticles. ISRN Mater. Sci. 2012, 2012, 691032. [Google Scholar] [CrossRef] [Green Version]
- Rim, H.; Park, H.R.; Song, M.Y. Synthesis of LiNi0.9Co0.1O2 from Li2Co3, NiO or NiCo3, and CoCO3 or Co3O4 and their electrochemical properties. Ceram. Int. 2013, 39, 7297–7303. [Google Scholar] [CrossRef]
- Croiset, E.; Rice, S.F.; Hanush, R.G. Hydrogen peroxide decomposition in supercritical water. AlChE J. 1997, 43, 2343–2352. [Google Scholar] [CrossRef]
- Garcia-Verdugo, E.; Venardou, E.; Thomas, W.B.; Whiston, K.; Partenheimer, W.; Hamley, P.A.; Poliakoff, M. Is it possible to achieve highly selective oxidations in supercritical water? Aerobic oxidation of methylaromatic compounds. Adv. Synth. Catal. 2004, 346, 307–316. [Google Scholar] [CrossRef]
- Lester, E.; Blood, P.; Denyer, J.; Giddings, D.; Azzopardi, B.; Poliakoff, M. Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles. J. Supercrit. Fluids 2006, 37, 209–214. [Google Scholar] [CrossRef]
- Zhao, F.; Song, Y.; Liu, X.; Zhang, X.; Ma, C.; Wang, G.; Fu, Y.; Ma, H. Unraveling electron-deficient setaria-viridis-like Co3O4@MnO2 heterostructure with superior photoelectrocatalytic efficiency for water remediation. Appl. Surf. Sci. 2022, 573, 151473. [Google Scholar] [CrossRef]
- Patil, V.; Joshi, P.; Chougule, M.; Sen, S. Synthesis and characterization of Co3O4 thin film. Soft Nanosci. Lett. 2012, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Du, H.; Zhang, J.; Lei, X.; Wang, Y.; Su, S.; Zhao, P. Influence of deposition temperature on crystalline structure and morphologies of Co3O4 films prepared by a direct liquid injection chemical vapor deposition. Surf. Coat. Technol. 2017, 319, 110–116. [Google Scholar] [CrossRef]
- Nikam, A.; Pagar, T.; Ghotekar, S.; Pagar, K.; Pansambal, S. A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. J. Chem. Rev. 2019, 1, 154–163. [Google Scholar]
- Dubey, S.; Kumar, J.; Kumar, A.; Sharma, Y.C. Facile and green synthesis of highly dispersed cobalt oxide (Co3O4) nano powder: Characterization and screening of its eco-toxicity. Adv. Powder Technol. 2018, 29, 2583–2590. [Google Scholar] [CrossRef]
- Ghotekar, S. A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 2019, 3, 187–200. [Google Scholar]
- Al-Qirby, L.M.; Radiman, S. Ultrasound-assisted green synthesis of nanocrystalline Co3O4 in the ionic liquid. AIP Conf. Proc. 2014, 1614, 41. [Google Scholar]
- Sivachidambaram, M.; Vijaya, J.J.; Kaviyarasu, K.; Kennedy, L.J.; Al-Lohedan, H.A.; Ramalingam, R.J. A novel synthesis protocol for Co3O4 nanocatalysts and their catalytic applications. RSC Adv. 2017, 7, 38861–38870. [Google Scholar] [CrossRef] [Green Version]
- Dewi, N.; Yulizar, Y.; Apriandanu, D. Green synthesis of Co3O4 nanoparticles using euphorbia heterophylla l. leaves extract: Characterization and photocatalytic activity. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012105. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Rashad, M.; Moharram, A.H.; Abdel-Rahim, M.A. Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles. Mater. Sci. Semicond. Process. 2016, 46, 1–5. [Google Scholar] [CrossRef]
- Kumarage, G.W.; Comini, E. Low-dimensional nanostructures based on cobalt oxide (Co3O4) in chemical-gas sensing. Chemosensors 2021, 9, 197. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Selloni, A. Electronic structure and bonding properties of cobalt oxide in the spinel structure. Phys. Rev. B 2011, 83, 245204. [Google Scholar] [CrossRef] [Green Version]
- Diallo, A.; Beye, A.C.; Doyle, T.B.; Park, E.; Maaza, M. Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties. Green Chem. Lett. Rev. 2015, 8, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; De Respinis, M.; Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 2014, 6, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.; Hutchings, G.S.; Jiao, F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2013, 135, 4516–4521. [Google Scholar] [CrossRef] [PubMed]
- Plaisance, C.P.; van Santen, R.A. Structure sensitivity of the oxygen evolution reaction catalyzed by cobalt (II, III) oxide. J. Am. Chem. Soc. 2015, 137, 14660–14672. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Z.; Wang, Y.; Ding, Y. Facet effect of Co3O4 nanocrystals on visible-light driven water oxidation. Appl. Catal. B 2018, 237, 74–84. [Google Scholar] [CrossRef]
- Mat, A.N.C.; Sairi, N.A.; Basirun, W.J.; Rezayi, M.; Teridi, M.A.M.; Mazhar, M. Photoelectrocatalytic oxidation of methanol over RuO2MnO2Co3O4 supported porous anatase under visible light irradiation. Mater. Chem. Phys. 2019, 224, 196–205. [Google Scholar] [CrossRef]
- He, T.; Chen, D.; Jiao, X.; Xu, Y.; Gu, Y. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir 2004, 20, 8404–8408. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, W.; Ding, W.; Zhang, T.; Zhang, Y.; Chi, N.; Wang, Q. Fabrication of electrochemically-modified BiVO4-MoS2-Co3O4 composite film for bisphenol A degradation. J. Environ. Sci. 2021, 102, 341–351. [Google Scholar] [CrossRef]
- Yang, P.; Li, W.; Lian, Y.; Yu, F.; Dai, B.; Guo, X.; Peng, B. A facile approach to synthesize CoO-Co3O4/TiO2 NAs for reinforced photoelectrocatalytic water oxidation. J. Solid State Electrochem. 2020, 24, 941–950. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, Z.; Huang, X.; Liu, M.; Zhao, G. High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays. Environ. Sci. Technol. 2015, 49, 5828–5835. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Y.; Jing, C.; Zhang, H.; Shao, Q.; Ge, R. A visible-light active p-n heterojunction ZnO/Co3O4 composites supported on ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue. Adv. Compos. Hybrid Mater. 2022, 5, 2406–2420. [Google Scholar] [CrossRef]
- Nan, J.; Guo, S.; Alhashmialameer, D.; He, Q.; Meng, Y.; Ge, R.; Guo, Z. Hydrothermal microwave synthesis of Co3O4/In2O3 nanostructures for photoelectrocatalytic reduction of Cr (VI). ACS Appl. Nano Mater. 2022, 5, 8755–8766. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Jin, E.; Lan, W.; Han, C.; Wang, G.; Ma, H. Constructing Z-scheme NiMoO4@ Co3O4 core-shell heterogeneous architectures with prominent photoelectrocatalytic performance toward water purification. Chemosphere 2023, 312, 137261. [Google Scholar] [CrossRef]
- Dai, G.; Liu, S.; Liang, Y.; Luo, T. Synthesis and enhanced photoelectrocatalytic activity of p-n junction Co3O4/TiO2 nanotube arrays. Appl. Surf. Sci. 2013, 264, 157–161. [Google Scholar] [CrossRef]
- Wang, X.; Jin, S.; Cui, Y.; Zhang, J.; Lu, H.; Ren, Y.; Xiong, C. Photocatalytic activity of Co3O4@ C enhanced by induction of amorphous cobalt-based MOF. Colloids Surf. A 2023, 657, 130597. [Google Scholar] [CrossRef]
- Chen, H.; Xue, C.; Cui, D.; Liu, M.; Chen, Y.; Li, Y.; Zhang, W. Co3O4-Ag photocatalysts for the efficient degradation of methyl orange. RSC Adv. 2020, 10, 15245–15251. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Wang, X.; Fu, Y.; Zhang, Y.; Ma, C.; Dong, X.; Yu, Z. Study on the fabrication and photoelectrochemical performance of the F−doped Ti/Co3O4 electrodes with n-type semiconductor characteristics. J. Solid State Electrochem. 2019, 23, 1767–1777. [Google Scholar] [CrossRef]
- Fantini, M.; Torrian, I. The compositional and structural properties of sprayed SnO2. Thin Solid Films 1986, 138, 255–265. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Lei, Y.; Baoying, L.V.; Gao, J.; Zhang, Y. Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surfaces, high oxygen evolution potential, and oxidation capability. Environ. Sci. Technol. 2010, 44, 1754–1759. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Gupta, B.K.; Raza, A.; Sharma, A.K.; Agnihotri, O.P. Fluorine-doped SnO2 films for solar cell application. Sol. Energy Mater. Sol. Cells 1981, 5, 39–49. [Google Scholar] [CrossRef]
- Joan, B.; Rita, S.; Encarnación, B.; Maria, J.; Ramón, M.F.; García-Antón, J. TiO2 Nanostructures for Photoelectrocatalytic Degradation of Acetaminophen. Nanomaterials 2019, 9, 583. [Google Scholar]
- Sapkal, R.T.; Shinde, S.S.; Mahadik, M.A.; Mohite, V.S.; Waghmode, T.R.; Govindwar, S.P. Photoelectrocatalytic decolorization and degradation of textile effluent using zno thin films. J. Photochem. Photobiol. B 2012, 114, 102–107. [Google Scholar] [CrossRef]
- Shao, H.; Wang, Y.; Zeng, H.; Zhang, J.; Zhao, X. Enhanced photoelectrocatalytic degradation of bisphenol a by BiVO4 photoanode coupling with peroxymonosulfate. J. Hazard. Mater. 2019, 394, 121105. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Domene, R.M.; Sánchez-Tovar, R. Customized WO3 nanoplatelets as visible-light photoelectrocatalyst for the degradation of a recalcitrant model organic compound (methyl orange). J. Photochem. Photobiol. A 2017, 356, 46–56. [Google Scholar] [CrossRef]
- Yang, R.; Ji, Y.; Zhang, J.; Zhang, R.; Liu, F.; Chen, Y. Efficiently degradation of polyacrylamide pollution using a full spectrum Sn3O4 nanosheet/ni foam heterostructure photoelectrocatalyst. Catal. Today 2019, 335, 520–526. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Lyu, J.; Moussa, M.; Liu, X.; Fu, Y.; Ma, H. Constructed Co3O4-Sn3O4 hierarchical nanoflower-tree heterostructure with boosting photoelectrocatalytic efficiency for water decontamination. Biochem. Eng. J. 2021, 423, 130252. [Google Scholar] [CrossRef]
- Fei, W.; Gao, J.; Li, N.; Chen, D.; Xu, Q.; Li, H.; Lu, J. A visible-light active p-n heterojunction NiFe-LDH/Co3O4 supported on Ni foam as photoanode for photoelectrocatalytic removal of contaminants. J. Hazard. Mater. 2021, 402, 123515. [Google Scholar] [CrossRef]
- Cao, H.; Lu, Y.; Ning, W.; Zhang, H.; Zheng, G. Co3O4 Nanoparticles Modified TiO2 Nanotube Arrays with Improved Photoelectrochemical Performance. Russ. J. Appl. Chem. 2019, 92, 64–70. [Google Scholar] [CrossRef]
Molecular structure | Single isotope mass | 240.779258 Da |
Nominal mass | 241 Da | |
Average mass | 240.7972 Da | |
Physical and chemical properties | Molecular weight | 240.7972 |
Melting point | 895 °C (dec.) (lit.) | |
Boiling point | 3800 °C | |
Density | 6.11 g/mL at 25 °C (lit.) | |
Laser particle size | 5–10 um | |
Tension | 0 Pa at 20 °C | |
Colour | Dark Gray | |
Proportion | 6.11 | |
Water solubility | Soluble in acids and alkalis. Insoluble in water. | |
Exposure Limits | ACGIH: TWA 0.02 mg/m3 | |
Information search | Merck | 142,429 |
InChIKey | LBFUKZWYPLNNJC-UHFFFAOYSA-N | |
CAS database | 1308-06-1 (CAS DataBase Reference) | |
NIST Chemical Information | Cobalt oxide (1308-06-1) | |
EPA Chemical Information | Cobalt tetraoxide (1308-06-1) |
Entry | Name of the Synthetic Process | Advantages | Disadvantages | Reference |
---|---|---|---|---|
1 | Hydrothermal reaction | The crystalline powder can be obtained directly without high-temperature sintering, the crystallinity is high, and it is easy to control the particle size of the produced crystal | Strong dependence on production equipment | [23] |
2 | Thermal decomposition | Thermal instability; pyrolysis products are different | The combustible gas is large and the residual carbon slag is small | [24] |
3 | Solution combustion | The process is simple, the operation is convenient, the purification efficiency is high, and the heat energy can be recovered | When the combustible component content is low, preheating energy consumption is required | [25] |
4 | Vapor deposition method | The film-forming device is simple and raw materials are easy to obtain | High reaction temperature | [54] |
5 | Co-precipitation | The process is simple, the cost is low, the preparation conditions are easy to control, and the synthesis cycle is short | The precipitate produces agglomeration or uneven composition | [27] |
6 | Sol–gel | Easy doping, uniform composition, low reaction temperature required | Film density is poor; volume shrinkage | [31] |
7 | Template method | Easy synthesis and size control, especially for nanomaterials | The pH and ionic strength of the solution are required to be higher | [32] |
8 | Chemical reduction method | Simple reagents and equipment; low cost | The reaction process is not easy to control; impurities easily appear | [55] |
9 | Wet synthesis | Simple operation; can be a large number of syntheses | There are hidden dangers in emissions and cooling methods | [56] |
10 | Ionic-liquid-assisted method | Low melting point, good thermal stability | The process is complex, the cost is high. and the conductivity is low | [57] |
Sr. No. | Annealing Temperature °C | Crystallite Size nm (from XRD) | Thickness μm | Energy Gap Eg, eV | Activation Eaσ, eV | Energy, HT LT | Carrier Concentration, cm−3 | Mobility cm2, V–1·s–1 |
---|---|---|---|---|---|---|---|---|
1 | 400 | 53.40 | 0.7748 | 2.58 | 0.21 | 0.060 | 2.40 × 1019 | 5.20 × 10−5 |
2 | 500 | 58.25 | 0.6887 | 2.34 | 0.36 | 0.062 | 2.75 × 1019 | 5.78 × 10−5 |
3 | 600 | 64.70 | 0.6425 | 2.21 | 0.48 | 0.064 | 3.27 × 1019 | 6.45 × 10−5 |
4 | 700 | 68.54 | 0.5998 | 2.07 | 0.54 | 0.064 | 4.50 × 1019 | 7.00 × 10−5 |
Modification Approach | Materials | Reference |
---|---|---|
Composite | ||
·Metal/Co3O4 | Cu/Co3O4 | [82] |
·Metal oxide/Co3O4 | ZnO/Co3O4 | [83] |
Co3O4/In2O3 | [84] | |
NiMoO4@Co3O4 | [85] | |
Co3O4/TiO2 | [86] | |
·Non-metal/Co3O4 | Co3O4@C | [87] |
·Plasmonic nano-metal/Co3O4 | Co3O4-Ag | [88] |
Materials | Method of Preparation | Analyte | % Removal | Ref. |
---|---|---|---|---|
TiO2 | Anodization | Acetaminophen (40 mg/L) | 33.0% after 180 min | [93] |
ZnO | Spray pyrolytic deposition | Rodamine B dye | 93.0% after 180 min | [94] |
BiVO4 | Electrodeposition | Bisphenol A (BPA) 10 mg/L | 24.2% after 120 min | [95] |
WO3 | Anodization | Methyl orange (MO) 50 μM 12 cm3 | 70–80% after 180 min | [96] |
Sn3O4 | Hydrothermal | Polyacrylamide (PAM) 20 mg/L | 70% after 180 min | [97] |
Co3O4 | Hydrothermal | Methylene blue (MB) 60 mg/L, 200 mL | 84.0% after 120 min | [89] |
Materials | Method of Preparation | Analyte | % Removal | Ref. |
---|---|---|---|---|
ZnO/Co3O4 | Liquid deposition method and calcination treatment | Methylene blue (MB) | 92.5% after 140 min | [53] |
Co3O4−Sn3O4 | Hydrothermal | Reactive brilliant blue KN−R | 87.5% in 2 h | [98] |
Co3O4/TiO2 | Impregnating–deposition–decompostion | Methyl orange (MO) | 90.0% after 90 min | [56] |
NiMoO4@Co3O4 | Two−step hydrothermal | Brilliant blue KN−R | 83.65% in 120 min | [55] |
PbO2 tipped Co3O4 | Hydrothermal | Brilliant blue KN−R | 80.0% in 120 min | [66] |
Co3O4/In2O3 | Microwave−hydrothermal | Remove Cr(VI) ions | 100% after 120 min | [54] |
NiFe−LDH/Co3O4 | Hydrothermal | Remove Cr(VI) ions | 100% after 120 min | [99] |
Bi2MoO6@Co3O4 | Hydrothermal | Bright blue KN−R | 88.43% after 110 min | [43] |
Co3O4@MnO2 | Two−step hydrothermal | Bright blue KN−R | 94.8% after 120 min | [38] |
Co3O4/TiO2−NTs | Anodization and electrodeposition | Methyl orange | 90.7% after 60 min | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Ma, H. Application of Co3O4 in Photoelectrocatalytic Treatment of Wastewater Polluted with Organic Compounds: A Review. Crystals 2023, 13, 634. https://doi.org/10.3390/cryst13040634
Zhao F, Ma H. Application of Co3O4 in Photoelectrocatalytic Treatment of Wastewater Polluted with Organic Compounds: A Review. Crystals. 2023; 13(4):634. https://doi.org/10.3390/cryst13040634
Chicago/Turabian StyleZhao, Fanyue, and Hongchao Ma. 2023. "Application of Co3O4 in Photoelectrocatalytic Treatment of Wastewater Polluted with Organic Compounds: A Review" Crystals 13, no. 4: 634. https://doi.org/10.3390/cryst13040634
APA StyleZhao, F., & Ma, H. (2023). Application of Co3O4 in Photoelectrocatalytic Treatment of Wastewater Polluted with Organic Compounds: A Review. Crystals, 13(4), 634. https://doi.org/10.3390/cryst13040634