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Abstract: The negative effects of refractory organic substances in water on the environment and life
have aroused worldwide attention. The efficiency of using photoelectrocatalysis (PEC) to degrade
refractory organic pollutants depends to a large extent on the properties of the photoanode semicon-
ductor. Therefore, the selection of a satisfactory photoanode semiconductor material to promote the
production of intermediate reactive species (hydroxyl radicals and superoxide radicals) has become a
key issue in improving the efficiency of PEC. Among the available catalysts, transition metal oxides
have received a lot of attention in recent years due to their low price and significant advantages. Due
to its outstanding photoelectrocatalytic properties, Co3O4 has emerged as a candidate to serve as
a photoelectrocatalyst specifically for the oxidation of water with oxygen in these materials. This
paper summarizes in detail the recent advances in Co3O4 materials for PEC, both pure Co3O4 and
Co3O4-based composites. In addition, this review discusses the impact of strategies on the perfor-
mance of photoelectrocatalysts, such as synthesis methods, crystal surface structures, and composites.
Finally, this review concludes with a presentation of the challenges and workable solutions for
Co3O4-based materials in PEC, along with a discussion of their potential for future research.
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1. Introduction

Wastewater is a global issue that has seriously harmed both human survival and
ecology. Among various organic pollution sources in wastewater, the discharge of dye-
containing effluents into water systems is a critical issue. Organic dyes and their inter-
mediate products may be subjected to various chemical reactions, which may cause in
these products becoming carcinogenic, mutated, or abnormal, and can have adverse effects
on micro-organisms, aquatic life, soil, and water [1,2]. Research by type shows that since
the beginning of the 20th century, the textile and pharmaceutical industries [3], which
produce a large number of pollutants in the water environment, have experienced signif-
icant growth [4,5]. It is well known that wastewater containing intractable organic dyes
has a high chemical oxygen demand (COD), high color, a high amount of total dissolved
solids (TDS), uneven pH, and low biodegradability [6]. Undoubtedly, a clean and secure
environment without the contamination of air, water, and soil is essential for people’s health
and survival. Research shows that traditional water treatment technology cannot solve the
problems of sludge and other secondary pollutants, resulting in the incomplete removal of
pollutants and the transport of pollutants to other media [7]. In contrast, advanced oxida-
tion processes (AOPs) are effective in degrading harmful and high-resistance pollutants
by producing powerful oxidizing agents in situ, such as hydroxyl radicals (·OH), which
have the capability of fully mineralizing toxic organic pollutants. In AOPs, there are four
known methods [8–10], including biological oxidation [11,12], chemical oxidation [13,14],
photochemical oxidation [15,16], and electrochemical oxidation processes [17,18]. Never-
theless, the single technical method is not entirely effective and successful in treating dyed
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wastewater due to its non-degradability and volatility. In practice, different methods are
often combined to achieve the desired water quality in the most cost-effective way.

In recent years, photocatalysis (PC) has performed well in the treatment of pollution
such as staining [19,20], drugs [21,22], and other endocrine disruptors [23–26]. Electrochem-
ical (EC) catalysis is considered a highly efficient, sustainable, and low-cost technology
for the degradation of wastewater [27]. AOPs are also a sub-class of photoelectrocatalysis
(PEC). PEC aims to achieve a synergistic effect by combining photocatalysis with elec-
trocatalysis. PEC has several advantages over PC and EC, including the ease of reuse of
electrodes concerning catalyst power. For instance, in sewage, the rate of synthesis can
be reduced and the degradation of organic compounds can be achieved by applying a
bias voltage. PEC also provides an opportunity to generate reactive oxygen species at
the cathode, which is beneficial for organic decomposition. To make full use of this free
energy, it is possible to use the sun’s rays to power the PEC, which is called Solar PEC [28].
Fujishima and Honda established the cornerstone of PEC technology by using the n-type
TiO2 and Pt electrodes in 1972 as the anode and cathode for water decomposition. This
approach opened a vital door to the PEC field [29]. Then, Vinodgopal et al. first degraded
organic pollutants in the PEC process using a particulate TiO2 film electrode in 1993 [30].
This success was extended to the degradation of dyes using many various semiconductor
materials in PEC processes, such as TiO2 [31,32], WO3 [33], ZnO, α-Fe2O3 [34], Sn3O4 [35],
and Co3O4.

Co3O4 is a typical spinel-type oxide, where Co(II) cations occupy tetrahedrally
(Co(II)Td) [36,37]. On the other hand, Co(III) cations occupy octahedrally (Co(III)OH) [38,39].
This gives the oxidation–reduction pair Co(II)/Co(III). It has been reported that the bond
of Co with other atoms is better suited to the process of water oxidation. This can provide a
redox pair Co(II)/Co(III) that is well suited to several redox reactions and electron transfers.
It has been reported that the binding force between Co atoms and other atoms is more
suitable. Because of its superior catalytic activity, low cost (in comparison with Au, Ag, Pt),
and high permanence, O2 has little capability to prevent “toxicity” (readily adsorbed into
an intermediate, hard to desorb), which influences the catalysis [40,41]. One-dimensional
(1D) Co3O4 is currently attracting a great deal of attention because of its high conductivity,
large surface area, wide optical response range, chemical stability [42,43], and its expected
synergistic effect with PC and EC [44,45]. Spinel Co3O4 may be a promising candidate to
replace precious metals as anode materials. Similarly, in recent years, more articles have
been published on Co3O4 than any other spinel oxide. Among them, Fe3O4, NiO, and
CuO are less active and have smaller electrochemical active surface areas (ECSA) than
Co3O4. To enhance the PEC performance of the Co3O4 photoanode, different strategies
have been utilized, such as facet engineering [46,47], heteroatom doping, heterojunction
construction, and the deposition of particles of noble metals [48]. They identified a number
of active sites that benefit OER in catalysis [49,50]. For instance, Yang and his colleagues
prepared hollow Co3O4 dodecahedrons, which were designed by the calcination of a ZIF-67
precursor under various conditions of argon and oxygen. It had a high percentage showing
good photoelectrocatalytic properties for oxygen evolution reaction (OER) [51]. Yan and
colleagues synthesized highly conductive, Ag-doped Co3O4 nanowires via electrodeposi-
tion. Ag-Co/FTO is a kind of OER material with good catalytic performance [52]. Recently,
Li and colleagues reviewed the latest advances in cobalt-based materials as bi-functional
photoelectrocatalysts for oxygen reduction reaction (ORR) [53]. There are a few types of
research on the degradation of pollutants using different anode materials.

This paper presents a summary of the methods and ideas for the design and synthe-
sis of materials and provides a perspective on methods to improve the performance of
cobalt-based materials. These studies are more conducive to the development of photoelec-
trocatalytic hydrolysis.
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2. Co3O4: Synthesis Routes

The physical and chemical properties of a substance are a reflection of its properties,
and we usually learn about the properties of a substance through observation, experimen-
tation, and analysis. However, we can also learn about a substance in terms of its physical,
chemical, and biological properties and its patterns of change. We have investigated the
properties of Co3O4 (Table 1) to gain a fuller understanding of its properties and to select a
suitable synthesis method. Up to now, several physics and chemistry methods have been
used to synthesize Co3O4. Table 2 summarizes the synthesis pathway and the advantages
and disadvantages of Co3O4.

Table 1. Characteristics of Co3O4.

Molecular structure

Single isotope mass 240.779258 Da

Nominal mass 241 Da

Average mass 240.7972 Da

Physical and chemical properties

Molecular weight 240.7972

Melting point 895 ◦C (dec.) (lit.)

Boiling point 3800 ◦C

Density 6.11 g/mL at 25 ◦C (lit.)

Laser particle size 5–10 um

Tension 0 Pa at 20 ◦C

Colour Dark Gray

Proportion 6.11

Water solubility Soluble in acids and alkalis. Insoluble in water.

Exposure Limits ACGIH: TWA 0.02 mg/m3

Information search

Merck 142,429

InChIKey LBFUKZWYPLNNJC-UHFFFAOYSA-N

CAS database 1308-06-1 (CAS DataBase Reference)

NIST Chemical Information Cobalt oxide (1308-06-1)

EPA Chemical Information Cobalt tetraoxide (1308-06-1)

Table 2. Various synthesis methods and advantages and disadvantages of Co3O4.

Entry Name of the Synthetic Process Advantages Disadvantages Reference

1 Hydrothermal reaction

The crystalline powder can be obtained directly
without high-temperature sintering, the

crystallinity is high, and it is easy to control the
particle size of the produced crystal

Strong dependence on
production equipment [23]

2 Thermal decomposition Thermal instability; pyrolysis products
are different

The combustible gas is large and
the residual carbon slag is small [24]

3 Solution combustion
The process is simple, the operation is convenient,

the purification efficiency is high, and the heat
energy can be recovered

When the combustible component
content is low, preheating energy

consumption is required
[25]

4 Vapor deposition method The film-forming device is simple and raw
materials are easy to obtain High reaction temperature [54]

5 Co-precipitation
The process is simple, the cost is low, the

preparation conditions are easy to control, and
the synthesis cycle is short

The precipitate produces
agglomeration or

uneven composition
[27]

6 Sol–gel Easy doping, uniform composition, low reaction
temperature required

Film density is poor;
volume shrinkage [31]

7 Template method Easy synthesis and size control, especially
for nanomaterials

The pH and ionic strength of the
solution are required to be higher [32]

8 Chemical reduction method Simple reagents and equipment; low cost The reaction process is not easy to
control; impurities easily appear [55]

9 Wet synthesis Simple operation; can be a large number
of syntheses

There are hidden dangers in
emissions and cooling methods [56]

10 Ionic-liquid-assisted method Low melting point, good thermal stability The process is complex, the cost is
high. and the conductivity is low [57]
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2.1. Hydrothermal

Among the known methods for the synthesis of Co3O4, the hydrothermal process
seems to be the most prominent because it produces a highly crystalline Co3O4. Further-
more, it is possible to control the shape of Co3O4 by simple optimization of the reaction
pressure, temperature, time, and pH of the solution.

Controlled continuous hydrothermal synthesis is one method of obtaining Co3O4
nanoparticles. Stripper water containing 0.25% v/v H2O2 is fed into the reactor by a high-
pressure pump through a preheating device. Experiments at the University of Nottingham
have shown that diluted aqueous hydrogen peroxide solutions decompose into a mixture
of oxygen and water [58,59]. Cobalt acetate tetrahydrate (II) is added to the reactor at room
temperature. In a nozzle reactor, oxygen-enriched water is preheated through an inner
tube, and an aqueous solution of cobalt acetate tetrahydrate (II) flows upward [60]. The
Nottingham team has previously reported in detail on the design of the nozzle reactor and
the mixing of fluids therein. At the outlet of the reactor, the mixture is pumped into the
cooling device. A dry powder of Co3O4 nanoparticles was obtained by freeze-drying with
liquid nitrogen and under low-temperature vacuum (−50 ◦C) for more than 36 h.

However, this method requires a longer reaction time and is not sufficiently cost-
effective. Zhao et al. proposed a more energy-efficient solution with lower consumption.
Initially, 5 mmol of Co(NO3)2·6H2O, 10.0 mmol of urea, and 5.0 mmol of NH4F were
dissolved thoroughly into 40 mL of high-purity water at room temperature to form a
homogeneous pink solution. The solution was transferred to a 60 mL, Teflon-lined stainless-
steel autoclave, a Ti substrate was inserted as prepared, and the solution was held at 120 ◦C
for 6 h. Subsequently, the Ti substrate having a pink precursor was naturally cooled to
ambient temperature and cleaned with deionized water and vacuum dried, followed by
annealing at 450 ◦C for 2 h at 2 ◦C/min to obtain a Co3O4 nanowire array on the Ti substrate.
Nanorods of Co3O4 were obtained using this method [61] (see Figure 1).
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Figure 1. Schematic diagram of the hydrothermal synthesis of Co3O4 nanorods.

2.2. Sol–Gel

Among the various conditions affecting material properties, the effect of temperature
on the material structure is not negligible. Annealing temperature affects the structure,
morphology, conductivity, and band gap of nanocrystalline Co3O4 films obtained via
sol–gel spin-coating. Cobalt acetate tetrahydrate is added into 40 mL methanol and stirred
vigorously for 1 h at 60 ◦C, resulting in a pale pink powder. The as-prepared powder is
sintered at various temperatures ranging from 400 to 700 ◦C with a fixed annealing time
of 1 h in ambient air to obtain Co3O4 with different crystallite sizes. Table 3 of the revised
article illustrates the effect of calcination temperature on the size of the Co3O4 crystals. The
nanocrystal Co3O4 powder is further dissolved in m-cresol, and the solution continues to
be stirred at room temperature for 11 h, then filtered. The filtered solution is deposited on a
glass substrate by a single-wafer spin processor [62].
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Table 3. Effect of annealing on Co3O4 thin film properties.

Sr. No.
Annealing

Temperature
◦C

Crystallite
Size nm

(from XRD)

Thickness
µm

Energy Gap
Eg, eV

Activation
Eaσ, eV

Energy,
HT LT

Carrier
Concentration,

cm−3

Mobility
cm2, V–1·s–1

1 400 53.40 0.7748 2.58 0.21 0.060 2.40 × 1019 5.20 × 10−5

2 500 58.25 0.6887 2.34 0.36 0.062 2.75 × 1019 5.78 × 10−5

3 600 64.70 0.6425 2.21 0.48 0.064 3.27 × 1019 6.45 × 10−5

4 700 68.54 0.5998 2.07 0.54 0.064 4.50 × 1019 7.00 × 10−5

2.3. Vapor Deposition Method

Davide Barreca et al. deposited the film in a low-pressure chemical vapor deposition
(CVD) reactor with a heated susceptor. O2 is used as a carrier and a reactive gas in
the process of synthesizing the oxide and removing the organic ligands as oxidation by-
products. The precursor is placed in a vaporizer attached to the tube of the reactor and kept
at 90 ◦C for the entire duration of the film deposition. The gas pipe and the valve between
the bubble and the reaction tube are heated to prevent the precursor from condensing. The
pressure is measured with a capacitive pressure gauge, and a mass flow controller is used
to control the gas flow. Before CVD, the substrates were desorbed in soapy water, washed
with water and isopropanol, and then air-dried. In order to minimize carbon contamination,
their surfaces were heated by O2 flow in the reaction chamber for 40 min [33]. Chen et al.
show the schematic of the direct liquid injection chemical vapor deposition (DLI-CVD)
apparatus. A novel spray atomizing and co-precipitating precursor delivery system was
developed; this consisted of a liquid precursor tank, the extraction switch, an atomizer, an
evaporator, and some necessary stainless-steel connection tubes. Solid Co(dpm)3 (DPM;
dipivaloylmethanate; Wuhan CVD Science & Technology Co., Ltd., Wuhan, China) was
used as the precursor into tetrahydrofuran [63] (see Figure 2).
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2.4. Green Synthesis

At present, the green synthesis of metal-oxide NPs is one of the most promising fields
in green chemistry and nanotechnology. The method of preparing Co3O4 nanoparticles
from latex at room temperature was studied. In addition, it is unnecessary to apply large
quantities of heat, power [64], pressure, or poisonous substances [65,66]. Because of its
environmental friendliness, simplicity, rapidity, toxicity, and economy, green synthesis
offers a one-step method to synthesize Co3O4 NPs [67,68]. The Co3O4 NPs are stabilized by
combining them with the biological material of amino acids, saponins, enzymes, proteins,
steroids, phenol, tannin, vitamins, sugars, flavone, etc. [69,70] (see Figure 3).
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3. Crystal Structure Analysis of Co3O4 Samples

Co3O4 crystallizes in a cubic regular spinel structure, which consists of Co ions in Co2+,
Co3+, and Co3+, respectively [71]. These are situated in the interstices in the tetrahedral (8a)
and the octahedral (16d) positions of the closely packed, face-centered cubic (FCC) lattice
formed by oxygen ions (Figure 4). In general, cobalt oxide consists of a spinel structure
with an indirect band gap of ~1.5 eV and a direct band gap of 2.2 eV. The common spinel
structure is expressed by the formula (A) [B2] C4, wherein A and B are cations in tetrahedral
and octahedral coordination, while C represents anions. The spinal structure is significantly
stable when A is divalent and B is trivalent, for instance, (A2+)[B3+]C4. Similarly, cobalt
oxide (Co3O4) is known to follow a spinel structure, such as (Co2+)[Co2

3+]O4 [72,73]. The
high-spin Co2+ occupies the interstitial sites of the tetrahedral (8a) interstices, while the
low-spin Co3+ is known to occupy the octahedral (16d) interstices of the closely packed, face-
centered, cubic lattice of CoO·Co2O3, as illustrated in Figure 4. It is known that the p-type
conductivity of the material (CoO·Co2O3) is derived from a gap in the crystal lattice and
an excess of oxygen at the interstitial site. However, the concentration of charge carriers is
different from the operating temperature or the doping condition. A. Diallo et al. discussed
that Co3O4 is generally active in the following order: {112} > {110} > {111} > {100} [74]. The
understanding of Co3O4’s crystal structure is further deepened [75,76].

Zhou et al. studied the structure and the action mechanism of Co3O4 from the crystal
structure and the atomic structure of the crystal surface. Figure 5a is a cell type (cell)
structure with a pointed crystal. In Figure 5b–d, the topmost surface atoms and the first
atoms, as well as the topmost suspended bonds, are exposed to the environment, and they
can react oxidatively in water. Therefore, the main influential factor for the water-oxidizing
activity of various well-defined Co3O4 crystals lies in the composition of the surface atoms
and their respective catalytic active sites [77].
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Figure 5. (a) The unit cell structure of spinel Co3O4, green ball is Co2+, blue ball denotes Co3+, and
red ball is O2−. The crystal structure model and arrangement of surface atoms of Co3O4 with different
exposed facets for (b) {100}, (c) {110}, and (d) {112}. The Co3O4 structure model is obtained from
inorganic crystal structure database (ICSD) with the corresponding JCPDS file.

4. Co3O4: Composites

Despite its unique properties, Co3O4 encounters a huge obstacle: the narrow band
gap of photoelectrons can recombine easily with holes, resulting in a small quantum effi-
ciency. Particle size and shape effects control the oxidation behavior of the nanostructured
photoelectrocatalysis treatment of organic wastewater. The size of the nanoparticles can be
altered by changing the cobalt concentration and reaction time. Spherical, cubic, octahedral,
and platelike nanoparticles with narrow size distributions and size ranges were formed in
high yields via thermal decomposition. These surfactant-free nanoparticles (around 10 nm)
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form an ideal substrate for the easy deposition of further elements, which in turn increases
the efficiency of photoelectrocatalytic degradation (Figure 6). It has been suggested that
the formation of composite materials, in which some are heterostructures, may be one of
the approaches to improve the photoelectrocatalytic performance of Co3O4 (Table 4). The
hybridization of Co3O4 with metals, non-metals, metal oxides, carbon-based materials, and
plasmonic nano-metals such as gold and silver to form heterostructured composites has
been extensively explored. The formation of heterogeneous composites by Co3O4 hybridiza-
tion has been extensively studied [78,79]. Doping noble metals into simple metal oxides
was shown to improve the photocatalytic activity by Chen et al. Among the noble metals,
elemental Ag is widely used due to its lower cost. Its role in improving the catalytic activity
mainly involves two aspects. First, Ag doping can separate the photogenerated carriers effi-
ciently because of the formation of a Schottky barrier. Second, it can improve the response
to visible light. A new electrochemically modified BiVO4-MoS2-Co3O4 thin film electrode
for environmental applications has been successfully synthesized by Cong et al. [80]. The
formation of composites has the potential to promote carrier migration, which leads to
the formation of the internal electric field, thus improving carrier separation and finally
improving the performance of Co3O4 as a photocatalyst. Yang et al. successfully used
a simple method to blend Co3O4 and CoO on TiO2 NAs. A series of characterization
methods was used to investigate the morphology, structure, and PEC water oxidation prop-
erties [81]. It was found that the photocurrent density of the obtained CoO-Co3O4/TiO2
photoelectrode was improved and could be maintained with good stability for more than
13 h. The improvement in the properties of CoO-Co3O4/TiO2 is due to the increase in light
absorption and reduction in charge transfer resistance, thus improving charge separation.
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Table 4. Modification approach and materials.

Modification Approach Materials Reference

Composite

·Metal/Co3O4 Cu/Co3O4 [82]
·Metal oxide/Co3O4 ZnO/Co3O4 [83]

Co3O4/In2O3 [84]
NiMoO4@Co3O4 [85]
Co3O4/TiO2 [86]

·Non-metal/Co3O4 Co3O4@C [87]
·Plasmonic nano-metal/Co3O4 Co3O4-Ag [88]
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The photo-generated electrons of Co3O4 can be channeled into the dopant, thereby
reducing the recombination rate [42]. This leads to the production of more oxidizing
substances (h+ and OH−) that break down harmful organic substances. Although the
process has some advantages, new electrons may be brought in by dopants, which may have
adverse effects. On the other hand, the formation of heterojunction composite materials
provides a more effective method for the separation of photogenerated carriers. This
technology can increase the photocatalyst’s ability to capture light, enhance its charge
separation ability, improve its charge utilization ratio, and prolong its service life.

5. Photoelectrocatalytic Application of Co3O4 Composites in Water Treatment

To date, Co3O4 and its composite materials are mainly used in capacitors and fuel
cells. However, there are few studies on its application in dyes and photoelectrocatalysis.
Applications in wastewater degradation are described in the following sections.

In the PC process, there is a problem with catalyst recycling. Nevertheless, in the
photoelectrocatalysis process, the catalytic material is fixed on the surface of the carrier
and used as an electrode, which is beneficial to the recycling of the material. In preparing
the anodes, it is necessary to have a conductive substrate on which Co3O4 is deposited.
Titanium plates, anodized TiO2, and fluoro-doped substrates have been used. Wang and
co-workers doped F− into Co3O4 as the conducting substrate. A titanium plate was formed
by etching, and cobalt nitrate was made from cobalt. Co3O4 nanowires have been prepared
using the hydrothermal method and the calcining method on the titanium substrate. The
best degradation conditions were obtained by varying the water temperature and electric
current during the decomposition [89]. Co3O4 is unsuitable as the photoanode material
to degrade organic pollutants because conventional Co3O4 is a p-type semiconductor. It
is well-known that the introduction of F− can not only promote the morphology of the
oxides but can also convert the intrinsic semiconductor to the n-type (e.g., SnO2) [90–92].
Moreover, the presence of F− in the crystal plays a key role in reducing the enucleation
rate and activating the substrate, which leads to strong mechanical adhesion between the
nano-architecture and the substrate. Based on the above results, the possible PEC processes
were described as follows (see Figure 7): Firstly, the electrons (e−) in the valence band
of Co3O4 under light irradiation could be excited to the conduction band, leaving the
holes (h+) in the valence band of Co3O4. When applying an anodic bias potential to the
semiconductor (i.e., the applied potential is greater than the flat band potential), there will
be an increase in band bending. Thus, electrons in the conduction band are flown through
the counter electrode via the external circuit, and the holes are transferred to the surface.
Thus, the bands are bent downwards, producing an ohmic contact. The band-bending
causes no impediment to the motion of the induced electrons from the conduction band of
Co3O4 into the metal Ti. Then, the electrons are moved to the external circuit faster via an
electric field, and the induced charge carriers were effectively separated.

As outlined in the introduction, many different semiconductor materials are used
in the PEC process to degrade dyes, such as titanium dioxide, tungsten trioxide, zinc
oxide, Sn3O4, and Co3O4. We have compared the photoelectric catalysis degradation
capabilities of commonly used compounds. It was found that Co3O4 is a suitable material
for photoelectric catalysis (Table 5). Coupling two or more different types of semiconductor
materials into a single photoanode can improve the photo-carrier transmission efficiency
and photo-conversion efficiency. Wang et al. reported one of the first studies on the
application of Co3O4 in the formation of heterojunction for water treatment. In this paper,
a new heterostructure of the PbO2-tipped Co3O4 nanowire array (NW) was prepared
by the methods of hydrothermal synthesis and electrochemical deposition. The results
show that the as-built PbO2/Co3O4 composite exhibits a large electro-active area, a low
charge-transfer resistance, and a high efficiency in the production of hydroxyl radicals. The
photoelectrochemical (PEC) performance of the as-constructed PbO2/Co3O4 composite
has been assessed by the decoloration of dye (Reactive Brilliant Blue KN−R). The PEC test
showed that the PbO2/Co3O4 composite prepared by this process had good repeatability
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and photoelectric properties. The enhancement of the PEC capability of composites may be
attributed to the formation of heterostructures. This work provides a good prospect for
using Co3O4 NWs doped with lead dioxide as photoanodes for treating refractory organic
pollutants. This further reinforces the argument that the PEC is a more effective approach
than EC and PC due to the synergy occurring in the PEC [89]. Co3O4 heterojunctions have
been explored in the remediation of water contaminated with organic pollutants using
photoelectric synergy, as outlined in Table 6.
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Table 5. Studies on photoelectrocatalytic degradation of toxic organics.

Materials Method of Preparation Analyte % Removal Ref.

TiO2 Anodization Acetaminophen (40 mg/L) 33.0% after 180 min [93]
ZnO Spray pyrolytic deposition Rodamine B dye 93.0% after 180 min [94]
BiVO4 Electrodeposition Bisphenol A (BPA) 10 mg/L 24.2% after 120 min [95]
WO3 Anodization Methyl orange (MO) 50 µM 12 cm3 70–80% after 180 min [96]
Sn3O4 Hydrothermal Polyacrylamide (PAM) 20 mg/L 70% after 180 min [97]
Co3O4 Hydrothermal Methylene blue (MB) 60 mg/L, 200 mL 84.0% after 120 min [89]

Table 6. Recent studies on photoelectrocatalytic degradation of toxic organics involving Co3O4.

Materials Method of Preparation Analyte % Removal Ref.

ZnO/Co3O4 Liquid deposition method and calcination treatment Methylene blue (MB) 92.5% after 140 min [53]
Co3O4−Sn3O4 Hydrothermal Reactive brilliant blue KN−R 87.5% in 2 h [98]
Co3O4/TiO2 Impregnating–deposition–decompostion Methyl orange (MO) 90.0% after 90 min [56]
NiMoO4@Co3O4 Two−step hydrothermal Brilliant blue KN−R 83.65% in 120 min [55]
PbO2 tipped Co3O4 Hydrothermal Brilliant blue KN−R 80.0% in 120 min [66]
Co3O4/In2O3 Microwave−hydrothermal Remove Cr(VI) ions 100% after 120 min [54]
NiFe−LDH/Co3O4 Hydrothermal Remove Cr(VI) ions 100% after 120 min [99]
Bi2MoO6@Co3O4 Hydrothermal Bright blue KN−R 88.43% after 110 min [43]
Co3O4@MnO2 Two−step hydrothermal Bright blue KN−R 94.8% after 120 min [38]
Co3O4/TiO2−NTs Anodization and electrodeposition Methyl orange 90.7% after 60 min [100]

6. Conclusions and Future Perspectives

In recent years, Co3O4 has been used in photoelectrocatalysis for wastewater treatment.
This material has good light-capturing performance in the visible light regions, so it has
good application prospects. The shape and the crystal structure of Co3O4 have been
reported to affect the photoelectrocatalytic properties of Co3O4, especially the crystal shape,
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which can change in the course of the application. Accordingly, it is possible to examine
the crystalline form or structure of Co3O4 before and following a degradation cycle.

In the field of photoelectrocatalysis, further work should focus on the degradation of
various types of pollutants. In this paper, the application of Co3O4 in PEC for the treatment
of organic pollutants in water was shown to be in its initial stages. Indeed, a section
of this paper highlights reports that can be compared to other types of semiconductors
found in PEC applications. Therefore, it is expected that Co3O4 will be widely used as a
photoelectrocatalyst. In addition, it would be worthwhile to find basic research on how
some pollutants are degraded and how they are treated. Through the discussion of the
above problems, we can better reveal its favorable structural form.

Although Co3O4-based catalysts, as frequently used photoelectrocatalysts, have made
significant progress in degradation through various effective strategies in recent years,
there are still some problems and challenges that cannot be ignored in its application:

(1) Morphology engineering can effectively improve the surface area. Increased poros-
ity is beneficial to the photoelectrocatalytic performance, and an ordered nano-structure
is beneficial to catalysis. Therefore, Co3O4-based catalysts with an array structure will be
widely studied in the degradation field.

(2) The material lends itself to various synthesis methods, and thus one can expect
more novel synthesis routes shortly.

(3) The Co3O4 composite exhibits high activity, but its catalytic performance is im-
proved, and its preparation process is also complicated, which is not conducive to industrial
applications. Therefore, the preparation technology suitable for practical applications still
needs to be studied.

(4) Stability is an important part of the catalyst performance, and corrosion-resistant
supports such as Cu, Pt and Ti should be considered as substrates, and cost should also be
considered. At the same time, in situ growth technology with binding characteristics can
avoid catalyst shedding, so in situ growth will be widely used by researchers in the process
of catalyst preparation.

(5) The p–n variability can be exploited in preparing a myriad of heterojunctions with
other semiconductors.
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