Antimicrobial, Antiasthmatic and Cytotoxic Activities of Silver Nanoparticles Synthesized by Green Method Using Zingiber officinale Extract
(This article belongs to the Section Inorganic Crystalline Materials)
Abstract
:1. Introduction
2. Materials. and Methods
2.1. Preparation of Plant Extract
2.2. Green Synthesis of Ag NPs
2.3. Characterization of Ag NPs
2.3.1. UV-Vis Spectroscopy
2.3.2. FT-IR Analysis
2.3.3. XRD Analysis
2.3.4. SEM Analysis
2.4. Antimicrobial Evaluations
2.4.1. Mueller Hinton Agar (MHA) Medium
2.4.2. Antimicrobial Assay
2.5. Antiasthma Assays
2.5.1. Asthmatic Model Preparation and Drug Treatment
2.5.2. Measurement of Latent Period
2.5.3. White Blood Cell and Eosinophils Analysis
2.5.4. Measurement of Wet and Dry Weight of Lungs
2.6. Cytotoxic Activity of Ag NPs
MTT Assay
2.7. Ethical Statement
2.8. Statistical Analysis
3. Results and Discussion
3.1. UV-Visible Analysis of Ag NPs
3.2. FT-IR Analysis of Ag NPs
3.3. XRD Pattern of Ag NPs
3.4. SEM Analysis of Ag NPs
3.5. Antimicrobial Activity
3.5.1. Antibacterial Potential of the Synthesized Ag NPs
3.5.2. Antifungal Activity of Synthesized Ag NPs
3.6. Antiasthma Activity of Ag NPs
3.7. Cytotoxicity Activity of Ag NPs on HepG2 Cell Line
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Govindrao, J.P.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar]
- Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioproc. 2014, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef] [PubMed]
- Amany, S.F.G.; Rab, E.; Gad, F. Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der. Pharma Chem. 2012, 4, 53–65. [Google Scholar]
- Marinescu, L.; Ficai, D.; Ficai, A.; Oprea, O.; Nicoara Vasile, B.S.; Boanta, L.; Marin, A.; Andronescu, E.; Holban, A.M. Comparative Antimicrobial Activity of Silver Nanoparticles Obtained by Wet Chemical Reduction and Solvothermal Methods. Int. J. Mol. Sci. 2022, 23, 5982. [Google Scholar] [CrossRef]
- Skiba, M.; Vorobyova, V.; Kovalenko, I.; Shakun, A. Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities. Chemistry 2020, 14, 297–303. [Google Scholar] [CrossRef]
- Krce, L.; Sprung, M.; Maravic, A.; Umek, P.; Salamon, K.; Krstulovic, N.; Aviani, I. Bacteria exposed to silver nanoparticles synthesized by laser ablation in water: Modelling, E. coli growth and inactivation. Materials 2020, 13, 653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anantharaman, S.; Rego, R.; Muthakka, M.; Anties, T.; Krishna, H. Andrographis paniculata-mediated synthesis of silver nanoparticles: Antimicrobial properties and computational studies. SN Appl. Sci. 2020, 2, 1618. [Google Scholar] [CrossRef]
- Rajagopal, T.; Jemimah, I.A.A.; Ponmanickam, P.; Ayyanar, M. Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects. J. Environ. Biol. 2015, 36, 1283. [Google Scholar]
- Bethu, M.S.; Netala, V.R.; Domdi, L.; Tartte, V.; Janapala, R.V. Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: An insight into the mechanism. Artif. Cells Nanomed. Biotechnol. 2018, 46, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. 2019, 69, 546–556. [Google Scholar] [CrossRef]
- Yousfi, F.; Abrigach, F.; Petrovic, J.D.; Sokovic, M.; Ramdani, M. Phytochemical screening and evaluation of the antioxidant and antibacterial potential of Zingiber officinale extracts. S. Afr. J. Bot. 2021, 142, 433–440. [Google Scholar] [CrossRef]
- Paramita, S.; Moerad, E.B.; Ismail, S.; Marliana, E. Antiasthmatic effect of Curcuma aeruginosa extract on isolated organ of the trachea. Research 2018, 7, 1799. [Google Scholar] [CrossRef]
- Vazquez-Munoz, R.; Meza-Villezcas, M.; Fournier, P.G.J.; Soria-Castro, E.; Juarez-Moreno, K.; Gallego-Hernandez, A.L.; Bogdanchikova, N.; Vazquez-Duhalt, R.; Saquero, H.A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS ONE 2019, 14, 224904. [Google Scholar] [CrossRef] [Green Version]
- Fozia, F.; Ahmad, N.; Buoharee, Z.A.; Ahmad, I.; Aslam, M.; Wahab, A.; Ullah, R.; Ahmad, S.; Alotaibi, A.; Tariq, A. Characterization and Evaluation of Antimicrobial Potential of Trigonella incise (Linn) Mediated Biosynthesized Silver Nanoparticles. Molecules 2022, 27, 4618. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Shaheen, A.; Ahmad, I.; Khattak, B.; Ahmad, M.; Ullah, R.; Bari, A.; Ali, S.S.; Alobaid, A.; Asmari, M.M.; et al. Green synthesis, characterization, enzyme inhibition, antimicrobial potential, and cytotoxic activity of plant mediated silver nanoparticle using Ricinus communis leaf and root extracts. Biomolecules 2021, 11, 206. [Google Scholar] [CrossRef]
- Geethalakshmi, R.; Sarada, D. Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their antimicrobial activities. Int. J. Eng. Sci. Technol. 2010, 2, 970–975. [Google Scholar]
- Nakkala, J.R.; Mata, R.; Gupta, A.K.; Sadras, S.R. Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract, Eur. J. Med. Chem. 2014, 85, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Al-Radadi, N.S. Ephedra mediated green synthesis of gold nanoparticles (AuNPs) and evaluation of its antioxidant, antipyretic, anti-asthmatic, and antimicrobial properties. Arab. J. Chem. 2023, 16, 104353. [Google Scholar] [CrossRef]
- Mei, F.; Xing, X.F.; Tang, Q.F.; Chen, F.L.; Guo, Y.; Song, S.; Tan, X.M.; Luo, J.B. Antipyretic and anti-asthmatic activities of traditional Chinese herb-pairs, Ephedra and Gypsum. Chin. J. Integr. Med. 2016, 22, 445–450. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, H.J.; Jeong, S.J.; Lee, H.J.; Kim, S.H.; Park, E.J. Cortex Mori Radicis extract exerts antiasthmatic effects via enhancement of CD4+ CD25+ Foxp3+ regulatory T cells and inhibition of Th2 cytokines in a mouse asthma model. J. Ethnopharmacol. 2011, 138, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Sakai-Kashiwabara, M.; Asano, K. Inhibitory action of quercetin on eosinophil activation in vitro. Evid. -Based Complement. Altern. Med. 2013, 2013, 127105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, S.J.; Huang, K.L.; Wu, S.Y.; Ko, F.C.; Wu, G.C.; Li, R.Y.; Li, M.H. Systemic administration of FC-77 dampens ischemia–reperfusion-induced acute lung injury in rats. Inflammation 2013, 36, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Qasim, M.; Nasar, T.; Zohra Khalil, A.T.; Saqib, S.; Ayaz, M.; Ahmad, A.; Shinwari, Z.K. Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chem. Lett. Rev. 2019, 12, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Awwad, A.M.; Salem, N.M. Green synthesis of silver nanoparticles by Mulberry Leaves Extract. Nanosci. Nanotechnol. 2012, 2, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 2016, 6, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Mason, C.; Vivekanandhan, S.; Misra, M.; Mohanty, A.K. Switchgrass (Panicum virgatum) extract mediated green synthesis of silver nanoparticles. World J. Nano Sci. Eng. 2012, 2, 47. [Google Scholar] [CrossRef]
- Varghese, B.; Kurian, M.; Krishna, S.; Athira, T.S. Biochemical synthesis of copper nanoparticles using Zingiber officinalis and Curcuma longa: Characterization and antibacterial activity study. Mater. Today Proc. 2020, 25, 302–306. [Google Scholar] [CrossRef]
- Wang, C.; Kim, Y.J.; Singh, P.; Mathiyalagan, R.; Jin, Y.; Yang, D.C. Green synthesis of silver nanoparticles by Bacillus methylotrophic us, and their antimicrobial activity. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1127–1132. [Google Scholar]
- Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 2010, 15, 4324–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, W.A.; Chakraborty, S.; Owens, G.; Islam, R.U. A review of the phytochemical mediated synthesis of Ag NP (silver nanoparticle): The wonder particle of the past decade. Appl. Nanosci. 2021, 11, 2625–2660. [Google Scholar] [CrossRef] [PubMed]
- Albukhari, S.M.; Ismail, M.; Akhtar, K.; Danish, E.Y. Catalytic reduction of nitrophenols and dyes using silver nanoparticles cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 548–561. [Google Scholar] [CrossRef]
- Aziz, B.; Hussein, S.; Brza, G.; Mohammed, M.A.J.; Abdulwahid, S.T.; Raza Saeed, R.; Hassanzadeh, A. Fabrication of interconnected plasmonic spherical silver nanoparticles with enhanced localized surface plasmon resonance (LSPR) peaks using quince leaf extract solution. Nanomaterials 2019, 9, 1557. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Seo, Y.S.; Kim, K.; Han, J.W.; Park, Y.; Cho, S. Concentration effect of reducing agents on green synthesis of gold nanoparticles: Size, morphology, and growth mechanism. Nanoscale Res. Lett. 2016, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sganzerla, W.G.; Longo, M.; de Oliveira, J.L.; da Rosa, C.G.; de Lima Veeck, A.P.; de Aquino, R.S.; Masiero, A.V.; Bertoldi, F.C.; Barreto, P.L.M.; Nunes, M.R. Nanocomposite poly (ethylene oxide) films functionalized with silver nanoparticles synthesized with Acca sellowiana extracts. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125125. [Google Scholar] [CrossRef]
- Johnson, P.; Krishnan, V.; Loganathan, C.; Govindhan, K.; Raji, V.; Sakayanathan, P.; Sathishkumar, P.; Palvannan, T. Rapid Biosynthesis of Bauhinia variegata Flower Extract-Mediated Silver Nanoparticles: An Effective Antioxidant Scavenger and α-Amylase Inhibitor. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 1488–1494. [Google Scholar] [CrossRef] [Green Version]
- Jena, J.; Pradhan, N.; Dash, B.P.; Sukla, L.B.; Panda, P.K. Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int. J. Nanomater. Biostruct. 2013, 3, 1–8. [Google Scholar]
- Prabu, H.J.; Johnson, I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int. J. Mol. Sci. 2015, 1, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Raut, R.W.; Mendhulkar, V.D.; Kashid, S.B. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. J. Photochem. Photobiol. B Biol. 2014, 132, 45–55. [Google Scholar] [CrossRef]
- Feng, Q.L.; Wu, J.; Chen, G.; Cui, F.; Kim, T.; Kim, J. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Periasamy, S.; Jegadeesan, U.; Sundaramoorthi, K.; Rajeswari, T.; Tokala, V.N.B.; Bhattacharya, S.; Muthusamy, S.; Sankoh, M.; Nellore, M.K. Comparative Analysis of Synthesis and Characterization of Silver Nanoparticles Extracted Using Leaf, Flower, and Bark of Hibiscus rosasinensis and Examine Its Antimicrobicidal Activity. J. Nanomater. 2022, 2022, 8123854. [Google Scholar] [CrossRef]
- Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 2014, 4, 571–576. [Google Scholar] [CrossRef] [Green Version]
- Sridhara, V.; Prathima, K. Vegetable assisted synthesis of silver nanoparticles and its antibacterial activity against two human pathogens, Asian. J. Pharm. Clin. Res. 2013, 6, 974–2441. [Google Scholar]
- Panacek, A.; Kolar, M.; Vecerova, R.; Prucek, R.; Soukupova, J.; Krystof, V.; Hamal, P.; Zboril, R.; Kvitek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [Google Scholar] [CrossRef] [PubMed]
- Pallavi, S.S.; Rudayni, H.A.; Bepari, A.; Niazi, S.K.; Nayaka, S. Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J. Biol. Sci. 2022, 29, 228–238. [Google Scholar]
- Singh, A.; Dar, M.Y.; Joshi, B.; Sharma, B.; Shrivastava, S.; Shukla, S. Photofabrication of silver nanoparticles: Novel drug to overcome hepatocellular ailments. Toxicol. Rep. 2019, 5, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, L.; Sun, Y.; Liu, L. Ecofriendly synthesis of silver–carboxy methyl cellulose nanocomposites and their antibacterial activity. J. Clus. Sci. 2018, 29, 1193–1199. [Google Scholar] [CrossRef]
- Nasar, M.Q.; Khalil, A.T.; Ali, M.; Shah, M.; Ayaz, M.; Shinwari, Z.K. Phytochemical analysis, Ephedra Procera CA Mey. Mediated green synthesis of silver nanoparticles, their cytotoxic and antimicrobial potentials. Medicine 2019, 55, 369. [Google Scholar]
- Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Saravanan, M.; Ubaid, M.F.; Ali, M.; Shinwari, Z.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine 2016, 12, 157–3177. [Google Scholar] [CrossRef]
Concentration (Zone of Inhibition in mm) Ag/Zingiber Officinale-NPs. | |||||
---|---|---|---|---|---|
Bacterial Strains | 20 µg/mL | 40 µg/mL | 60 µg/mL | 80 µg/mL | Standard |
Staphylococcus Aureus | 13.5 ± 0.03 | 15.6 ± 0.01 | 16 ± 0.03 | 17.8 ± 0.03 | 21.8± 0.07 |
Pseudomonas aeruginose | 12.7 ±0.05 | 14.3 ± 0.04 | 15.0 ±0.05 | 15.1 ± 0.04 | 20 ± 0.04 |
Klebsiella Pneumoniae | 9.8 ± 0.02 | 12.5 ± 0.03 | 14.9 ± 0.06 | 15.0 ± 0.04 | 22.5± 0.05 |
Salmonella typhi | 12.6 ± 0.03 | 11.8 ± 0.06 | 15.8 ± 0.07 | 14.4 ± 0.05 | 21.8 ± 0.04 |
Fungal Strains | |||||
Fusarium graminium, | 9.0 ± 0.03 | 9.5 ± 0.01 | 10.5 ± 0.01 | 11.1 ± 0.01 | 12.8 ± 0.01 |
Alterneria alternate | 10.2 ± 0.05 | 10.5 ± 0.04 | 10.7 ± 0.04 | 10.8 ± 0.04 | 12.0 ± 0.04 |
Candida albicane. | 9.8 ± 0.02 | 10.2 ± 0.03 | 10.0 ± 0.03 | 10.3 ± 0.03 | 13.1 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubaraki, M.A.; Mustafa, K.; Fozia, F.; Aslam, M.; Ahmad, I.; Ahmad, N. Antimicrobial, Antiasthmatic and Cytotoxic Activities of Silver Nanoparticles Synthesized by Green Method Using Zingiber officinale Extract. Crystals 2023, 13, 333. https://doi.org/10.3390/cryst13020333
Mubaraki MA, Mustafa K, Fozia F, Aslam M, Ahmad I, Ahmad N. Antimicrobial, Antiasthmatic and Cytotoxic Activities of Silver Nanoparticles Synthesized by Green Method Using Zingiber officinale Extract. Crystals. 2023; 13(2):333. https://doi.org/10.3390/cryst13020333
Chicago/Turabian StyleMubaraki, Murad A., Kashif Mustafa, Fozia Fozia, Madeeha Aslam, Ijaz Ahmad, and Nisar Ahmad. 2023. "Antimicrobial, Antiasthmatic and Cytotoxic Activities of Silver Nanoparticles Synthesized by Green Method Using Zingiber officinale Extract" Crystals 13, no. 2: 333. https://doi.org/10.3390/cryst13020333
APA StyleMubaraki, M. A., Mustafa, K., Fozia, F., Aslam, M., Ahmad, I., & Ahmad, N. (2023). Antimicrobial, Antiasthmatic and Cytotoxic Activities of Silver Nanoparticles Synthesized by Green Method Using Zingiber officinale Extract. Crystals, 13(2), 333. https://doi.org/10.3390/cryst13020333