The Influence of Inserted Metal Ions on Acid Strength of OH Groups in Faujasite
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Cation Introduction
2.2. Methods of Sample Characterization (PXRD, SEM, FAAS, FTIR, UVVis-DRS)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haas, A.; Harding, D.; Nee, J. FCC catalysts containing the high-silica faujasites EMO and EMT for gas-oil cracking. Micropor. Mesopor. Mater. 1999, 28, 325–333. [Google Scholar] [CrossRef]
- Rodionova, L.; Knyazeva, E.; Konnov, S.V.; Ivanova, I. Application of Nanosized Zeolites in Petroleum Chemistry: Synthesis and Catalytic Properties (Review). Pet. Chem. 2019, 59, 455–470. [Google Scholar] [CrossRef]
- Guzmán-Castillo, M.; Armendáriz-Herrera, H.; Pérez-Romo, P.; Hernández-Beltrán, F.; Ibarra, S.; Valente, J.; Fripiat, J. Y zeolite depolymerization-recrystallization: Simultaneous formation of hierarchical porosity and Na dislodging. Micropor. Mesopor. Mater. 2011, 143, 375–382. [Google Scholar] [CrossRef]
- Sachse, A.; Grau-Atienza, A.; Jardim, E.; Linares, N.; Thommes, M.; García-Martínez, J. Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating. Cryst. Growth Des. 2017, 17, 4289–4305. [Google Scholar] [CrossRef]
- Verboekend, D.; Nuttens, N.; Locus, R.; Van Aelst, J.; Verolme, P.; Groen, J.; Pérez-Ramírez, J.; Sels, B. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions. Chem. Soc. Rev. 2016, 45, 3331–3352. [Google Scholar] [CrossRef]
- Otto, T.; Zones, S.; Iglesia, E. Synthetic strategies for the encapsulation of nanoparticles of Ni, Co, and Fe oxides within crystalline microporous aluminosilicates. Micropor. Mesopor. Mater. 2018, 270, 10–23. [Google Scholar] [CrossRef]
- Kostyniuk, A.; Bajec, D.; Likozar, B. Catalytic hydrogenation, hydrocracking and isomerization reactions of biomass tar model compound mixture over Ni-modified zeolite catalysts in packed bed reactor. Renew. Energy 2021, 167, 409–424. [Google Scholar] [CrossRef]
- Choo, M.; Oi, L.; Ling, T.; Ng, E.; Lin, Y.; Centi, G.; Juan, J. Deoxygenation of triolein to green diesel in the H2-free condition: Effect of transition metal oxide supported on zeolite Y. J. Anal. Appl. Pyrolysis 2020, 147, 104797. [Google Scholar] [CrossRef]
- Lakiss, L.; Kouvatas, C.; Gilson, J.; Aleksandrov, H.; Vayssilov, G.; Nesterenko, N.; Mintova, S.; Valtchev, V. Unlocking the Potential of Hidden Sites in Faujasite: New Insights in a Proton Transfer Mechanism. Angew. Chem. Int. Ed. 2021, 133, 26906–26913. [Google Scholar] [CrossRef]
- Datka, J.; Gil, B.; Kawałek, M.; Staudte, B. Low temperature IR studies of CO sorbed in ZSM-5 zeolites. J. Mol. Struct. 1999, 511–512, 133–139. [Google Scholar] [CrossRef]
- Sadowska, K.; Góra-Marek, K.; Datka, J. Accessibility of acid sites in hierarchical zeolites: Quantitative IR studies of pivalonitrile adsorption. J. Phys. Chem. C 2013, 117, 9237–9244. [Google Scholar] [CrossRef]
- Thibault-Starzyk, F.; Travert, A.; Saussey, J.; Lavalley, J. Correlation between activity and acidity on zeolites: A high temperature infrared study of adsorbed acetonitrile. Top. Catal. 1998, 6, 111–118. [Google Scholar] [CrossRef]
- Huang, Z.; Li, T.; Yang, B.; Chang, C. Role of surface frustrated Lewis pairs on reduced CeO2(110) in direct conversion of syngas. Chin. J. Catal. 2020, 41, 1906–1915. [Google Scholar] [CrossRef]
- Olszowka, J.; Lemishka, M.; Mlekodaj, K.; Kubat, P.; Rutkowska-Żbik, D.; Dedecek, J.; Tabor, E. Determination of Zn Speciation, Siting, and Distribution in Ferrierite Using Luminescence and FTIR Spectroscopy. J. Phys. Chem. C. 2021, 125, 9060–9073. [Google Scholar] [CrossRef]
- Montanari, T.; Bevilacqua, M.; Resini, C.; Busca, G. UV-Vis and FT-IR Study of the Nature and Location of the Active Sites of Partially Exchanged Co-H Zeolites. J. Phys. Chem. B 2004, 108, 2120–2127. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Bacariza, M.; Maleval, M.; Graça, I.; Lopes, J.; Henriques, C. Power-to-Methane over Ni/Zeolites: Influence of the Framework Type. Micropor. Mesopor. Mater. 2019, 274, 102–112. [Google Scholar] [CrossRef]
- Afreen, G.; Patra, T.; Upadhyayula, S. Zn-Loaded HY Zeolite as Active Catalyst for Iso-Propylation of Biomass-Derived Phenolic Compounds: A Comparative Study on the Effect of Acidity and Porosity of Zeolites. Mol. Catal. 2017, 441, 122–133. [Google Scholar] [CrossRef]
- Kim, H.; Choi, S.; Lim, W. Preparation and Structural Study of Fully Dehydrated, Highly Mg2+-Exchanged Zeolite Y (FAU, Si/Al = 1.56) from Undried Methanol Solution. J. Porous Mater. 2014, 21, 659–665. [Google Scholar] [CrossRef]
- Imre, B.; Konya, Z.; Hannus, I.; Halasz, J.; Nagy, J.; Kiricsi, I. Hydrodechlorination of Chlorinated Compounds on Different Zeolites. Stud. Surf. Sci. Catal. 2002, 142, 927–934. [Google Scholar]
- Awala, H.; Gilson, J.; Retoux, R.; Boullay, P.; Goupil, J.; Valtchev, V.; Mintova, S. Template-free nanosized faujasite-type zeolites. Nat. Mater. 2015, 14, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Bosnar, S.; Bosnar, D.; Ren, N.; Rajić, N.; Gržeta, B.; Subotić, B. Positron lifetimes in pores of some low-silica zeolites: Influence of water content, crystal size and structural type. J. Porous Mater. 2013, 20, 1329–1336. [Google Scholar] [CrossRef]
- Wichterlova, P.; Tvaružkova, B.; Sobalik, Z.; Sarv, Z. Determination and properties of acid sites in H-ferrierite A comparison of ferrierite and MFI structures. Micropor. Mesopor. Mater. 1998, 24, 223–233. [Google Scholar] [CrossRef]
- Srivastava, V.; Gusain, D.; Sharma, Y. Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram. Int. 2013, 39, 9803–9808. [Google Scholar] [CrossRef]
- Bulavchenko, O.; Cherepanova, S.V.; Malakhov, V.V.; Dovlitova, L.; Ishchenko, A.V.; Tsybulya, S.V. In situ XRD study of nanocrystalline cobalt oxide reduction. Kinet. Catal. 2009, 50, 192–198. [Google Scholar] [CrossRef]
- Dharmaraj, N.; Prabu, P.; Nagarajan, S.; Kim, C.; Park, J.; Kim, H. Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2006, 128, 111–114. [Google Scholar] [CrossRef]
- Aramendía, M.; Benítez, J.; Borau, V.; Jiménez, C.; Marinas, J.; Ruiz, J.; Urbano, F. Characterization of Various Magnesium Oxides by XRD and1H MAS NMR Spectroscopy. J. Solid State Chem. 1999, 144, 25–29. [Google Scholar] [CrossRef]
- Palčić, A.; Moldovan, S.; El Siblani, H.; Vicente, A.; Valtchev, V. Defect Sites in Zeolites: Origin and Healing. Adv. Sci. 2022, 9, 2104414. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Y.; Yu, S.; Guo, W.; Mu, S.; Wang, H.; Zhao, Y.; Hou, L.; Fan, Y.; Gao, F. Template-free hydrothermal synthesis of nickel cobalt hydroxide nanoflowers with high performance for asymmetric supercapacitor. Electrochim. Acta 2015, 161, 279–289. [Google Scholar] [CrossRef]
- Noei, H.; Qiu, H.; Wang, Y.; Löffler, E.; Wöll, C.; Muhler, M. The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys. Chem. Chem. Phys. 2008, 10, 7092–7097. [Google Scholar] [CrossRef]
- Li, X.; Han, H.; Xu, W.; Hwang, S.J.; Lu, P.; Bhan, A.; Tsapatsis, M. Enhanced Reactivity of Accessible Protons in Sodalite Cages of Faujasite Zeolite. Angew. Chem. Int. Ed. 2022, 61, e202111180. [Google Scholar] [CrossRef]
- Chizallet, C.; Costentin, G.; Che, M.; Delbecq, F.; Sautet, P. Infrared characterization of hydroxyl groups on MgO: A periodic and cluster density functional theory study. J. Am. Chem. Soc. 2007, 129, 6442–6452. [Google Scholar] [CrossRef] [PubMed]
- Knözinger, E.; Jacob, K.; Singh, S.; Hofmann, P. Hydroxyl groups as IR active surface probes on MgO crystallites. Surf. Sci. 1993, 290, 388–402. [Google Scholar] [CrossRef]
- Seo, S.; Lim, W.; Seff, K. Single-crystal structures of fully and partially dehydrated zeolite y (FAU, Si/Al = 1.56) Ni 2+ exchanged at a low pH, 4.9. J. Phys. Chem. C 2012, 116, 13985–13996. [Google Scholar] [CrossRef]
- Seo, S.; Moon, D.; An, J.; Jeong, H.; Lim, W. Time-dependent Ni2+-ion exchange in zeolites y (FAU, si/Al = 1.56) and their single-crystal structures. J. Phys. Chem. C 2016, 120, 28563–28574. [Google Scholar] [CrossRef]
- Kim, C.; Jung, K.; Heo, N.; Seff, K. Crystal Structures of Vacuum-Dehydrated Ni2+-Exchanged Zeolite Y (FAU, Si/Al = 1.69) Containing Three-Coordinate Ni2+, Ni8O4·xH2O8+, x ≤ 4, Clusters with Near Cubic Ni4O4 Cores, and H+. J. Phys. Chem. C 2009, 113, 5164–5181. [Google Scholar] [CrossRef]
- Pelmenschikov, A.; Van Santen, R.; Jänchen, J.; Meijer, E. CD3CN as a probe of Lewis and Bronsted acidity of zeolites. J. Phys. Chem. 1993, 97, 11071–11074. [Google Scholar] [CrossRef]
- Frising, T.; Leflaive, P. Extraframework cation distributions in X and Y faujasite zeolites: A review. Micropor. Mesopor. Mater. 2008, 114, 27–63. [Google Scholar] [CrossRef]
- Li, S.; Zheng, A.; Su, Y.; Zhang, H.; Chen, L.; Yang, J. Brønsted/Lewis Acid Synergy in Dealuminated HY Zeolite: A Combined Solid-State NMR and Theoretical Calculation Study. J. Am. Chem. Soc. 2007, 129, 11161–11171. [Google Scholar] [CrossRef]
- Hadjiivanov, K. Chapter 2: Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy. Adv. Catal. 2014, 57, 99–318. [Google Scholar] [CrossRef]
- Batool, S.; Sushkevich, V.; van Bokhoven, J. Correlating Lewis acid activity to extra-framework aluminum species in zeolite Y introduced by Ion-exchange. J. Catal. 2022, 408, 24–35. [Google Scholar] [CrossRef]
- Xu, B.; Bordiga, S.; Prins, R.; Van Bokhoven, J. Effect of framework Si/Al ratio and extra-framework aluminum on the catalytic activity of Y zeolite. Appl. Catal. A General 2007, 333, 245–253. [Google Scholar] [CrossRef]
- Lutz, W.; Rüscher, C.; Heidemann, D. Determination of the framework and non-framework [SiO2] and [AlO2] species of steamed and leached faujasite type zeolites: Calibration of IR, NMR, and XRD data by chemical methods. Micropor. Mesopor. Mater. 2002, 55, 193–202. [Google Scholar] [CrossRef]
- Bhering, D.; Ramírez-Solís, A.; Mota, C. A density functional theory based approach to extraframework aluminum species in zeolites. J. Phys. Chem. B 2003, 107, 4342–4347. [Google Scholar] [CrossRef]
- Han, J.; Woo, S. UV/VIS diffuse reflectance spectroscopic (DRS) study of cobalt-containing Y zeolites dehydrated at elevated temperatures. Korean J. Chem. Eng. 1991, 8, 235–239. [Google Scholar] [CrossRef]
- Sebastian, J.; Jinka, K.; Jasra, R. Effect of alkali and alkaline earth metal ions on the catalytic epoxidation of styrene with molecular oxygen using cobalt (II)-exchanged zeolite X. J. Catal. 2006, 244, 208–218. [Google Scholar] [CrossRef]
- Smeets, P.; Woertink, J.; Sels, B.; Solomon, E.; Schoonheydt, R. Transition-Metal Ions in Zeolites: Coordination and Activation of Oxygen. Inorg. Chem. 2010, 49, 3573–3583. [Google Scholar] [CrossRef]
- Verberckmoes, A.; Weckhuysen, B.; Schoonheydt, R. Spectroscopy and coordination chemistry of cobalt in molecular sieves 1. Micropor. Mesopor. Mater. 1998, 22, 165–178. [Google Scholar] [CrossRef]
- Verberckmoes, A.; Weckhuysen, B.; Pelgrims, J.; Schoonheydt, R. Diffuse reflectance spectroscopy of dehydrated cobalt-exchanged faujasite-type zeolites: A new method for Co2+ siting. J. Phys. Chem. 1995, 99, 15222–15228. [Google Scholar] [CrossRef]
- Egerton, T.; Hagan, A.; Stone, F.; Vickerman, J. Magnetic Studies of Zeolites. Part 1.—The magnetic properties of CoY and CoA. J. Chem. Soc. Faraday Trans. 1971, 68, 723–735. [Google Scholar] [CrossRef]
- Alrehaily, L.; Joseph, J.; Biesinger, M.; Guzonas, D.; Wren, J. Gamma-radiolysis-assisted cobalt oxide nanoparticle formation. Phys. Chem. Chem. Phys. 2013, 15, 1014–1024. [Google Scholar] [CrossRef] [PubMed]
- Bacariza, M.; Graça, I.; Westermann, A.; Ribeiro, M.; Lopes, J.; Henriques, C. CO2 Hydrogenation over Ni-Based Zeolites: Effect of Catalysts Preparation and Pre-reduction Conditions on Methanation Performance. Top. Catal. 2016, 59, 314–325. [Google Scholar] [CrossRef]
- Schoonheydt, R.; Roodhooft, D.; Leeman, H. Coordination of Ni2+ to lattice oxygens of the zeolites X and Y. Zeolites 1987, 7, 412–417. [Google Scholar] [CrossRef]
- Lever, A. Inorganic Electronic Spectroscopy, 1st ed.; Elsevier Publishing Company: Amsterdam, The Netherlands, 1968. [Google Scholar]
- Graça, I.; González, L.V.; Bacariza, M.; Fernandes, A.; Henriques, C.; Lopes, J.; Ribeiro, M. CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Appl. Catal. B Environ. 2014, 147, 101–110. [Google Scholar] [CrossRef]
- Qi, Y.; Qi, H.; Li, J.; Lu, C. Synthesis, microstructures and UV-vis absorption properties of β-Ni(OH)2 nanoplates and NiO nanostructures. J. Cryst. Growth 2008, 310, 4221–4225. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Q.; Gu, J. Effective synthesis of zeolite-encapsulated Ni nanoparticles with excellent catalytic performance for hydrogenation of CO2 to CH4. Dalt. Trans. 2020, 49, 14771–14775. [Google Scholar] [CrossRef]
Sample | O | Na | Al | Si | Metal | Si/Al |
---|---|---|---|---|---|---|
ZX-n-Na | 4.64 | 0.69 | 0.69 | 1.00 | 1.44 | |
ZX-n-Mg | 4.99 | 0.32 | 0.67 | 1.00 | 0.19 | 1.50 |
ZX-n-Co | 4.15 | 0.26 | 0.68 | 1.00 | 0.20 | 1.47 |
ZX-n-Ni | 4.77 | 0.29 | 0.67 | 1.00 | 0.21 | 1.50 |
ZX-n-Zn | 4.48 | 0.18 | 0.70 | 1.00 | 0.23 | 1.48 |
ZX-Ct-Na | 4.21 | 0.50 | 0.50 | 1.00 | 1.99 | |
ZX-Ct-Mg | 4.44 | 0.16 | 0.48 | 1.00 | 0.15 | 2.09 |
ZX-Ct-Co | 4.30 | 0.18 | 0.48 | 1.00 | 0.15 | 2.09 |
ZX-Ct-Ni | 4.04 | 0.15 | 0.45 | 1.00 | 0.14 | 2.21 |
ZX-Ct-Zn | 4.15 | 0.15 | 0.48 | 1.00 | 0.14 | 2.10 |
ZX-6060-Na | 3.94 | 0.44 | 0.44 | 1.00 | 2.27 | |
ZX-6060-Mg | 4.16 | 0.16 | 0.43 | 1.00 | 0.12 | 2.27 |
ZX-6060-Co | 3.99 | 0.17 | 0.43 | 1.00 | 0.14 | 2.30 |
ZX-6060-Ni | 4.03 | 0.15 | 0.44 | 1.00 | 0.14 | 2.28 |
ZX-6060-Zn | 4.09 | 0.14 | 0.44 | 1.00 | 0.13 | 2.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medak, G.; Puškarić, A.; Bronić, J. The Influence of Inserted Metal Ions on Acid Strength of OH Groups in Faujasite. Crystals 2023, 13, 332. https://doi.org/10.3390/cryst13020332
Medak G, Puškarić A, Bronić J. The Influence of Inserted Metal Ions on Acid Strength of OH Groups in Faujasite. Crystals. 2023; 13(2):332. https://doi.org/10.3390/cryst13020332
Chicago/Turabian StyleMedak, Glorija, Andreas Puškarić, and Josip Bronić. 2023. "The Influence of Inserted Metal Ions on Acid Strength of OH Groups in Faujasite" Crystals 13, no. 2: 332. https://doi.org/10.3390/cryst13020332
APA StyleMedak, G., Puškarić, A., & Bronić, J. (2023). The Influence of Inserted Metal Ions on Acid Strength of OH Groups in Faujasite. Crystals, 13(2), 332. https://doi.org/10.3390/cryst13020332