Designing Black Phosphorus and Heptazine-Based Crystalline Carbon Nitride Composites for Photocatalytic Water Splitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Fabrication of Materials
2.2.1. Fabrication of KPHI
2.2.2. Fabrication of BP/KPHI
2.3. Characterization
2.4. Photocatalytic Activity
3. Results and Discussion
3.1. Morphology Characterization of Catalysts
3.2. Optical Properties of Catalysts
3.3. Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Damkale, S.R.; Arbuj, S.S.; Umarji, G.G.; Panmand, R.P.; Khore, S.K.; Sonawane, R.S.; Rane, S.B.; Kale, B.B. Two-dimensional hexagonal SnS2 nanostructures for photocatalytic hydrogen generation and dye degradation. Sustain. Energy Fuels 2019, 3, 3406–3414. [Google Scholar] [CrossRef]
- Li, J.; Yuan, H.; Zhang, W.; Jin, B.; Feng, Q.; Huang, J.; Jiao, Z. Advances in Z-scheme semiconductor photocatalysts for the photoelectrochemical applications: A review. Carbon Energy 2022, 4, 294–331. [Google Scholar] [CrossRef]
- Ren, Y.; Dong, Y.; Feng, Y.; Xu, J. Compositing two-dimensional materials with TiO2 for photocatalysis. Catalysts 2018, 8, 590. [Google Scholar] [CrossRef]
- Wang, S.; Guan, B.Y.; Lou, X.W.D. Construction of ZnIn2S4–In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem.Soc. 2018, 140, 5037–5040. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Yao, S.; Liu, F.; Li, Y.; He, J.; Lin, Z.; Huang, F.; Liu, C.; Wang, M. Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. J. Mater. Chem. A 2021, 9, 17143–17172. [Google Scholar] [CrossRef]
- Yang, L.; Peng, Y.; Luo, X.; Dan, Y.; Ye, J.; Zhou, Y.; Zou, Z. Beyond C3N4 π-conjugated metal-free polymeric semiconductors for photocatalytic chemical transformations. Chem. Soc. Rev. 2021, 50, 2147–2172. [Google Scholar] [CrossRef]
- Lewis, N.S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, J.; Huang, Y.; Liu, J.; Ma, M.; Liu, K.; Zhao, C.; Wang, Z.; Qu, S.; Zhang, L.; et al. Recent development in electronic structure tuning of graphitic carbon nitride for highly efficient photocatalysis. J. Semicond. 2022, 43, 021701. [Google Scholar] [CrossRef]
- Liao, G.; Gong, Y.; Zhang, L.; Gao, H.; Yang, G.-J.; Fang, B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080–2147. [Google Scholar] [CrossRef]
- Zhao, G.-Q.; Hu, J.; Long, X.; Zou, J.; Yu, J.-G.; Jiao, F.-P. A critical review on black phosphorus-based photocatalytic CO2 reduction application. Small 2021, 17, 2102155. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Philo, D.; Li, Y.; Shi, L.; Chang, K.; Ye, J. Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coord. Chem. Rev. 2020, 424, 213516. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, S.; Yang, P.; Huang, C.; Wang, X. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928–4936. [Google Scholar] [CrossRef]
- Bi, Q.; Hu, K.; Chen, J.; Zhang, Y.; Riaz, M.S.; Xu, J.; Han, Y.; Huang, F. Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction. Appl. Catal. B 2021, 295, 120211. [Google Scholar] [CrossRef]
- Chen, C.; Hu, J.; Yang, X.; Yang, T.; Qu, J.; Guo, C.; Li, C.M. Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO2 reduction to syngas. ACS Appl. Mater. Interfaces 2021, 13, 20162–20173. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Y.; Gao, B.; Lin, B.; Wang, X. Phosphorene-based heterostructured photocatalysts. Engineering 2021, 7, 991–1001. [Google Scholar] [CrossRef]
- Zhu, M.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J.; Wang, X.; Majima, T. Metal-Free Photocatalyst for H2 evolution in visible to near-infrared region: Black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 2017, 139, 13234–13242. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, Z.; Ou, H.; Asiri, A.M.; Chen, Y.; Wang, X. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Y.; Wang, L.; Tan, M.; Xiao, Y.; Gao, B.; Lin, B. Metal-free 2D/2D heterostructured photocatalyst of black phosphorus/covalent triazine-based frameworks for water splitting and pollutant degradation. Sustain. Energy Fuels 2020, 4, 3739–3746. [Google Scholar] [CrossRef]
- Liu, C.; Han, Z.; Feng, Y.; Dai, H.; Zhao, Y.; Han, N.; Zhang, Q.; Zou, Z. Ultrathin Z-scheme 2D/2D N-doped HTiNbO5 nanosheets/g-C3N4 porous composites for efficient photocatalytic degradation and H2 generation under visible light. J. Colloid Interface Sci. 2021, 583, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Sun, W.; Zhang, Q.; Zhang, X.; Hu, X.; Liu, E.; Fan, J. Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation. Appl. Catal. B 2020, 261, 118249. [Google Scholar] [CrossRef]
- He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B 2020, 272, 119006. [Google Scholar] [CrossRef]
- Zheng, D.; Zhou, J.; Fang, Z.; Heil, T.; Savateev, A.; Zhang, Y.; Antonietti, M.; Zhang, G.; Wang, X. H2 and CH4 production from bio-alcohols using condensed poly(heptazine imide) with visible light. J. Mater. Chem. A 2021, 9, 27370–27379. [Google Scholar] [CrossRef]
- Zhang, G.; Li, G.; Heil, T.; Zafeiratos, S.; Lai, F.; Savateev, A.; Antonietti, M.; Wang, X. Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO2 reduction. Angew. Chem. Int. Ed. 2019, 58, 3433–3437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhu, J.; Xu, Y.; Yang, C.; He, C.; Zhang, P.; Li, Y.; Ren, X.; Mi, H. In-plane charge transport dominates the overall charge separation and photocatalytic activity in crystalline carbon nitride. ACS Catal. 2022, 12, 4648–4658. [Google Scholar] [CrossRef]
- Zhai, B.; Li, H.; Gao, G.; Wang, Y.; Niu, P.; Wang, S.; Li, L. A crystalline carbon nitride based near-infrared active photocatalyst. Adv. Funct. Mater. 2022, 32, 2207375. [Google Scholar] [CrossRef]
- Schwinghammer, K.; Hug, S.; Mesch, M.B.; Senker, J.; Lotsch, B.V. Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ. Sci. 2015, 8, 3345–3353. [Google Scholar] [CrossRef]
- Burrow, J.N.; Ciufo, R.A.; Smith, L.A.; Wang, Y.; Calabro, D.C.; Henkelman, G.; Mullins, C.B. Calcium poly(heptazine imide): A covalent heptazine framework for selective CO2 adsorption. ACS Nano 2022, 16, 5393–5403. [Google Scholar] [CrossRef]
- Bojdys, M.J.; Müller, J.-O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem.-Eur. J. 2008, 14, 8177–8182. [Google Scholar] [CrossRef]
- Lin, L.; Ou, H.; Zhang, Y.; Wang, X. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016, 6, 3921–3931. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Metal-containing carbon nitride compounds: A new functional organic–metal hybrid material. Adv. Mater. 2009, 21, 1609–1612. [Google Scholar] [CrossRef]
- Li, X.-H.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott–Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, T.; Sun, Z.; Chen, H.; Guan, J.; Chen, X.; Ji, H.; Du, P.; Yang, S. Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater. 2017, 29, 1605776. [Google Scholar] [CrossRef]
- Tian, B.; Tian, B.; Smith, B.; Scott, M.C.; Lei, Q.; Hua, R.; Tian, Y.; Liu, Y. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 4345–4350. [Google Scholar] [CrossRef]
- Elbanna, O.; Zhu, M.; Fujitsuka, M.; Majima, T. Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and near-infrared light irradiation. ACS Catal. 2019, 9, 3618–3626. [Google Scholar] [CrossRef]
- Liang, Q.; Shi, F.; Xiao, X.; Wu, X.; Huang, K.; Feng, S. In situ growth of CoP nanoparticles anchored on black phosphorus nanosheets for enhanced photocatalytic hydrogen production. ChemCatChem 2018, 10, 2179–2183. [Google Scholar] [CrossRef]
- Wen, M.; Wang, J.; Tong, R.; Liu, D.; Huang, H.; Yu, Y.; Zhou, Z.K.; Chu, P.K.; Yu, X.F. A low-cost metal-free photocatalyst based on black phosphorus. Adv. Sci. 2019, 6, 1801321. [Google Scholar] [CrossRef]
- Zhu, M.; Osakada, Y.; Kim, S.; Fujitsuka, M.; Majima, T. Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal. B 2017, 217, 285–292. [Google Scholar] [CrossRef]
- Zhu, M.; Cai, X.; Fujitsuka, M.; Zhang, J.; Majima, T. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew. Chem. Int. Ed. 2017, 56, 2064–2068. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Wang, Y.; Chen, H.; Wang, H.; Li, Y.; Chen, Y.; Zheng, Y. Designing Black Phosphorus and Heptazine-Based Crystalline Carbon Nitride Composites for Photocatalytic Water Splitting. Crystals 2023, 13, 312. https://doi.org/10.3390/cryst13020312
Xiao Z, Wang Y, Chen H, Wang H, Li Y, Chen Y, Zheng Y. Designing Black Phosphorus and Heptazine-Based Crystalline Carbon Nitride Composites for Photocatalytic Water Splitting. Crystals. 2023; 13(2):312. https://doi.org/10.3390/cryst13020312
Chicago/Turabian StyleXiao, Zijie, Yayun Wang, Hui Chen, Haotian Wang, Yuke Li, Yilin Chen, and Yun Zheng. 2023. "Designing Black Phosphorus and Heptazine-Based Crystalline Carbon Nitride Composites for Photocatalytic Water Splitting" Crystals 13, no. 2: 312. https://doi.org/10.3390/cryst13020312
APA StyleXiao, Z., Wang, Y., Chen, H., Wang, H., Li, Y., Chen, Y., & Zheng, Y. (2023). Designing Black Phosphorus and Heptazine-Based Crystalline Carbon Nitride Composites for Photocatalytic Water Splitting. Crystals, 13(2), 312. https://doi.org/10.3390/cryst13020312