Thermodynamic Properties and Equation of State for Tungsten
Abstract
:1. Introduction
2. Physicochemical Model
2.1. Thermodynamic Functions
2.2. Molar Volume
2.3. Isothermal Bulk Modulus
3. Selected Experimental Data
3.1. Thermodynamic Properties
3.2. Thermophysical Properties
3.2.1. Molar Volume
3.2.2. Thermal Expansion
3.2.3. Isothermal Compressibility
3.2.4. Adiabatic Bulk Modulus
4. Calculation Procedure
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMahon, M.I.; Nelmes, R.J. High-pressure structures and phase transformations in elemental metals. Chem. Soc. Rev. 2006, 35, 943–963. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, J.A. Ultrahigh-pressure structural phase transitions in Cr, Mo, and W. Phys. Rev. B 1992, 45, 2004–2014. [Google Scholar] [CrossRef] [PubMed]
- Soderlind, P.; Ahuja, R.; Eriksson, O.; Johansson, B. Theoretical predictions of structural phase transitions in Cr, Mo, and W. Phys. Rev. B 1994, 49, 9365–9371. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, P. Evaluation of the thermodynamic properties of tungsten. Int. J. Thermophys. 1985, 6, 395–409. [Google Scholar] [CrossRef]
- Saxena, S.K.; Zhang, J. Thermochemical and pressure-volume-temperature systematics of data on solids, examples: Tungsten and MgO. Phys. Chem. Miner. 1990, 17, 45–51. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Oganov, A.R. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shockwave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B 2007, 75, 024115. [Google Scholar] [CrossRef]
- Hrubiak, R. Exploring Thermal and Mechanical Properties of Selected Transition Elements under Extreme Conditions: Experiments at High Pressures and High Temperatures. Ph.D. Thesis, Florida International University, Miami, FL, USA, 2012. [Google Scholar]
- Chase, M.W.; Ansara, I.; Dinsdale, A.; Eriksson, G.; Grimvall, G.; Hoglund, H.; Yokokawa, H. Group 1: Heat capacity models for crystalline phases from 0 K to 6000 K. Calphad 1995, 19, 437–447. [Google Scholar]
- Kozyrev, N.V.; Gordeev, V.V. Thermodynamic characterization and equation of state for solid and liquid lead. Metals 2022, 12, 16. [Google Scholar] [CrossRef]
- Kozyrev, N.V.; Gordeev, V.V. Thermodynamic properties and equation of state for solid and liquid aluminum. Metals 2022, 12, 1346. [Google Scholar] [CrossRef]
- Kozyrev, N.V. Thermodynamic properties and equation of state for solid and liquid copper. Int. J. Thermophys. 2023, 44, 1–18. [Google Scholar] [CrossRef]
- MacDonald, J.R. Review of some experimental and analytical equations of state. Rev. Modern Phys. 1969, 41, 316–349. [Google Scholar] [CrossRef]
- Dymond, J.H.; Malhotra, R. The Tait equation: 100 years on. Int. J. Thermophys. 1988, 9, 941–951. [Google Scholar] [CrossRef]
- Bedford, R.E.; Bonnier, G.; Maas, H.; Pavese, F. Recommended values of temperature on the International Temperature Scale of 1990 for a selected set of secondary reference points. Metrologia 1996, 33, 133–154. [Google Scholar] [CrossRef]
- Wang, K.; Reeber, R.R. The role of defects on thermophysical properties: Thermal expansion of V, Nb, Ta, Mo and W. Mater. Sci. Eng. 1998, R23, 101–137. [Google Scholar] [CrossRef]
- Deffrennes, G.; Oudot, B. A self-consistent model to describe the temperature dependence of the bulk modulus, thermal expansion and molar volume compatible with 3rd generation CALPHAD databases. Calphad 2021, 74, 102291. [Google Scholar] [CrossRef]
- Kirillin, V.A.; Sheindlin, A.E.; Chekhovskoi, V.Y.; Petrov, V.A. Thermodynamic properties of tungsten in the temperature range of 0–3500 K. Russ. J. Phys. Chem. A 1963, 37, 2249–2256. (In Russian) [Google Scholar]
- Stull, D.R.; Prophet, H. JANAF Thermochemical Tables, 2nd ed.; NBS: Washington, DC, USA, 1971.
- Glushko, V. Termodinamicheskie Svoistva Individual’nykh Veshchestv In Thermodynamic Properties of Individual Substances, 3rd ed.; Nauka: Moscow, Russia, 1982; Volume 4, Book 2. (In Russian) [Google Scholar]
- Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1995. [Google Scholar]
- Chase, M.W. NIST-JANAF Thermochemical Tables, 4th ed.; Journal of Physical and Chemical Reference Data; American Chemical Society: Washington, DC, USA, 1998; Volume 9, pp. 1–1951. [Google Scholar]
- Arblaster, J.W. Thermodynamic properties of tungsten. J. Phase Equilib. Diff. 2018, 39, 0689. [Google Scholar] [CrossRef]
- Chekhovskoi, V.Y. Enthalpy and Heat Capacity of Tungsten in the 400–3600 K Temperature Range. Teplofizika Vysokikh Temperatur 1980, 18, 1191–1195. (In Russian) [Google Scholar]
- White, G.K.; Minges, M.L. Thermophysical properties of some key solids: An update. Int. J. Thermophys. 1997, 18, 1269–1327. [Google Scholar] [CrossRef]
- Bodryakov, V.Y. Correlation of temperature dependences of thermal expansion and heat capacity of refractory metal up to the melting point: Tungsten. High Temp. 2015, 53, 643–648. [Google Scholar] [CrossRef]
- Grigoriev, I.S.; Meilikhov, E.Z. Handbook of Physical Quantities; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Ablaster, J.W. Selected Values of the Crystallographic Properties of the Elements; Materials Park-ASM International: Cleveland, OH, USA, 2018. [Google Scholar]
- Gray, D.E. American Institute of Physics Handbook, 3rd ed.; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- Novikova, S. Teplovoe Rasshirenie Tverdykh Tel [Thermal Expansion of Solids]; Nauka: Moscow, Russia, 1974; 293p. (In Russian) [Google Scholar]
- Touloukian, Y.S.; Kirby, R.K.; Taylor, R.E.; Desai, P.D. Thermal Expansion Metallic Elements and Alloys. In Thermophysical Properties of Matter; The TPRC Data Series; IFI/Plenum: New York, NY, USA, 1975. [Google Scholar]
- Slack, G.A.; Bartram, S.F. Thermal expansion of some diamond like crystals. J. Appl. Phys. 1975, 46, 89–98. [Google Scholar] [CrossRef]
- Vaidya, S.N.; Kennedy, G.C. Compressibility of 18 metals to 45 kbar. J. Phys. Chem. Solids 1970, 31, 2329–2345. [Google Scholar]
- Ming, L.; Manghnani, M.H. Isothermal compression of bcc transition metals to 100 kbar. J. Appl. Phys. 1978, 49, 208–212. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 2004, 70, 094112. [Google Scholar] [CrossRef]
- Dewaele, A.; Torren, M.; Loubeyre, P.; Mezouar, M. Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations. Phys. Rev. B 2008, 78, 104102. [Google Scholar] [CrossRef]
- Litasov, K.D.; Gavryushkin, P.N.; Dorogokupets, P.I.; Sharygin, I.S.; Shatskiy, A.; Fei, Y.; Rashchenko, S.V.; Seryotkin, Y.V.; Higo, Y.; Funakoshi, K.; et al. Thermal equation of state to 33.5 GPa and 1673 K and thermodynamic properties of tungsten. J. Appl. Phys. 2013, 113, 133505. [Google Scholar] [CrossRef]
- Anzellini, S.; Dewaele, A.; Occelli, F.; Loubeyre, P.; Mezouar, M. Equation of state of rhenium and application for ultra-high pressure calibration. J. Appl. Phys. 2014, 115, 043511. [Google Scholar] [CrossRef]
- Dubrovinsky, L.; Dubrovinskaia, N.; Bykova, E.; Bykov, M.; Prakapenka, V.; Prescher, C.; Glazyrin, K.; Liermann, H.P.; Hanfland, M.; Ekholm, M.; et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 2015, 525, 226–242. [Google Scholar] [CrossRef]
- Qi, X.; Cai, N.; Chen, T.; Wang, S.; Li, B. Experimental and theoretical studies on the elasticity of tungsten to 13 GPa. J. Appl. Phys. 2018, 124, 075902. [Google Scholar] [CrossRef]
- Dewaele, A. Equations of state of simple solids (including Pb, NaCl and LiF) compressed in helium or neon in the Mbar range. Minerals 2019, 9, 684. [Google Scholar] [CrossRef]
- Anzellini, S.; Errandonea, D.; Burakovsky, L.; Proctor, J.E.; Turnbull, R.; Beavers, C.M. Characterization of the high-pressure and high-temperature phase diagram and equation of state of chromium. Sci. Rep. 2022, 12, 6727. [Google Scholar] [CrossRef] [PubMed]
- Al’tshuler, L.V.; Brusnikin, S.E.; Kuz’menkov, E.A. Isotherms and Gruneisen functions for 25 metals. J. Appl. Mech. Tech. Phys. 1987, 28, 129–141. [Google Scholar] [CrossRef]
- Mashimo, T.; Liu, X.; Kodama, M.; Zaretsky, E.; Katayama, M.; Nagayama, K. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W). J. Appl. Phys. 2016, 119, 035904. [Google Scholar] [CrossRef]
- Yokoo, M.; Kawai, N.; Nakamura, K.G.; Kondo, K.; Tange, Y.; Tsuchiya, T. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa. Phys. Rev. B 2009, 80, 104114. [Google Scholar] [CrossRef]
- Ayres, R.A.; Shannette, G.W.; Stein, D.F. Elastic constants of tungsten-rhenium alloys from 77 to 298 K. J. Appl. Phys. 1975, 46, 1526–1530. [Google Scholar] [CrossRef]
- Katahara, K.W.; Manghnani, M.H.; Fisher, E.S. Pressure derivatives of the elastic moduli of BCC Ti-V-Cr, Nb-Mo and Ta-W alloys. J. Phys. F. Met. Phys. 1979, 9, 773–790. [Google Scholar] [CrossRef]
- Khein, A.; Singh, D.J.; Umrigar, C.J. All-electron study of gradient corrections to the local-density functional in metallic systems. Phys. Rev. B 1995, 51, 4105–4109. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, B.T. Elastic properties of polycrystalline tungsten at elevated temperatures. J. Appl. Phys. 1962, 33, 2140. [Google Scholar] [CrossRef]
- Bolef, D.I.; De Klerk, J. Elastic constants of single-crystal Mo and W between 77 and 500 K. J. Appl. Phys. 1962, 33, 2311–2314. [Google Scholar] [CrossRef]
- Featherstont, F.H.; Neighbours, J.R. Elastic constants of tantalum, tungsten, and molybdenum. Phys. Rev. 1963, 130, 1324–1333. [Google Scholar] [CrossRef]
- Lowrie, R.; Gonas, A.M. Single-crystal elastic properties of tungsten from 24 to 1800 °C. J. Appl. Phys. 1967, 38, 4505–4509. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308. [Google Scholar] [CrossRef]
- Young, D.A.; Cynn, H.; Söderlind, P.; Landa, A. Zero-Kelvin compression isotherms of the elements 1 ≤ Z ≤ 92 to 100 GPa. J. Phys. Chem. Ref. Data 2016, 45, 043101. [Google Scholar] [CrossRef]
- Giri, A.K.; Mitra, G.B. Extrapolated values of lattice constants of some cubic metals at absolute zero. J. Phys. D Appl. Phys. 1985, 18, L75–L78. [Google Scholar] [CrossRef]
ΔT, K | CP (298.15) | CP (Tm) | Ref. |
---|---|---|---|
0–3500 | 24.292 | – | [17] (Kirillin, 1963) |
100–3600 | 24.296 | 61.714 | [18] (Stull, 1971) |
298.15–3600 | 24.42 | – | [23] (Chekhovskoi, 1980) |
100–3695 | 24.270 | 49.762 | [19] (Glushko, 1982) |
298.15–3695 | 24.160 | 53.708 | [4] (Gustafson, 1985) |
20–3400 | 24.297 | – | [24] (White, 1997) |
298.15–3680 | 24.297 | 65.664 | [20] (Barin, 1995) |
100–3680 | 24.295 | 66.149 | [21] (Chase, 1998) |
1–3695 | – | 55.41 | [25] (Bodryakov, 2015) |
5–3687 | 24.255 | 56.525 | [22] (Arblaster, 2018) |
ΔT, K | Data | Form | Ref. |
---|---|---|---|
100–2000 | α, ΔL/L0 | T | [28] (Gray, 1972) |
2–3200 | α | T, P | [29] (Novikova, 1974) |
5–3600 | α, ΔL/L0 | T, P, A | [30] (Touloukian, 1975) |
0–3000 | α | T | [31] (Slack, 1975) |
298–3695 | ΔG(P,T) | P, A | [4] (Gustafson, 1985) |
300–3700 | α | T | [5] (Saxena, 1990) |
10–3500 | α | T, P, A | [24] (White, 1997) |
50–3600 | a, α | T, P, A | [15] (Wang, 1998) |
1–3695 | α | T, P | [25] (Bodryakov, 2015) |
0–3687 | a, α, V, ρ | T | [27] (Ablaster, 2018) |
ΔP, kbar | Method *1 | Form *2 | EoS *3 | B0, kbar | n0 | Ref. |
---|---|---|---|---|---|---|
0–45 | PCA | T, EoS | Mur | 3000.89 | 19.101 | [32] (Vaidya, 1972) |
13.5–94 | DAC | T, P, EoS | BM3 | 3070 | 4.32 | [33] (Ming, 1978) |
50–4000 | ShW | T | – | – | – | [42] (Al’tshuler, 1987) |
0–1530 | DAC | T, P, EoS | Vin | 2960 | 4.30 | [34] (Dewaele, 2004) |
281–1970 | DAC | T | – | – | – | [35] (Dewaele, 2008) |
0–335 *4 | DAC | T, P, EoS | Vin | 3080 (10) | 4.20 (5) | [36] (Litasov, 2013) |
0–2000 | DAC | P, EoS | BM3 | 3068 (15) | 4.53 (4) | [37] (Dubrovinsky, 2013) |
Vin | 3019 (12) | 4.82 (3) | ||||
14.2–1440 | DAC | T | – | – | – | [38] (Anzellini, 2014) |
0–4000 | ShW | P, EoS | BM3 | 3175 | 4.05 | [43] (Mashimo, 2016) |
Vin | 3185 | 3.99 | ||||
13–128 | UI | T | – | – | – | [39] (Qi, 2018) |
0–1550 | DAC | EoS | Vin | 2986 | 4.37 | [40] (Dewaele, 2019) |
0–1314 | DAC | T | – | – | – | [41] (Anzellini, 2022) |
Equation | Parameter | Value |
---|---|---|
Thermodynamic functions (1)–(3) | Υ1, J·mol−1·K−1 | 10.36369 |
Υ2, J·mol−1·K−1 | 15.32115 | |
Υ3, J·mol−1·K−1 | 5.215750 | |
θ1, K | 165.4360 | |
θ2, K | 297.1887 | |
θ3, K | 3762.0056 | |
ΔS0, J·mol−1·K−1 | 0.090141 | |
h, J·mol−1·K–m | 6.700803 × 10–14 | |
m | 4.892331 | |
EoS (5, 6) | n0 | 3.73390 |
n1, K–0.5 | 9.2262 × 10–4 | |
Bulk modulus (8) | B0, kbar | 3117.4 |
s1 | 1.0222 × 10–4 | |
s2 | 7.2271 × 10–2 | |
s3 | 10.999 | |
ω1, K | 2.1784 | |
ω2, K | 1432.695 | |
ω3, K | 13,956.82 | |
Thermal expansion (7) | V0, cm3/mol | 9.5222 |
X1 | 1.1828 × 10–6 | |
X2 | 1.2692 × 10–5 | |
X3 | 1.5524 × 10–6 | |
Θ1, K | 112.2153 | |
Θ2, K | 253.1136 | |
Θ3, K | 2150.4715 | |
g, K–k | 8.8124 × 10–18 | |
k | 4.305338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozyrev, N.V.; Gordeev, V.V. Thermodynamic Properties and Equation of State for Tungsten. Crystals 2023, 13, 1470. https://doi.org/10.3390/cryst13101470
Kozyrev NV, Gordeev VV. Thermodynamic Properties and Equation of State for Tungsten. Crystals. 2023; 13(10):1470. https://doi.org/10.3390/cryst13101470
Chicago/Turabian StyleKozyrev, Nikolay V., and Vladimir V. Gordeev. 2023. "Thermodynamic Properties and Equation of State for Tungsten" Crystals 13, no. 10: 1470. https://doi.org/10.3390/cryst13101470
APA StyleKozyrev, N. V., & Gordeev, V. V. (2023). Thermodynamic Properties and Equation of State for Tungsten. Crystals, 13(10), 1470. https://doi.org/10.3390/cryst13101470