Development of the 2.7 μm to 3 μm Erbium-Doped Laser
Abstract
:1. Introduction
2. The Applications for Erbium-Doped Lasers
3. The 3 µm Er-Doped Laser System
4. Development Status of 3 µm Er-Doped Laser Media and Their Lasers
4.1. Development Status of Er-Doped Garnet Crystals and Their Lasers
4.1.1. Er:YAG
4.1.2. Er:YSGG
4.2. Development Status of Er-Doped Fluoride Crystals and Their Lasers
4.2.1. Er:SrF2 and Er:CaF2
4.2.2. Er:YLF
4.3. Development Status of Er-Doped Sesquioxide Crystals and Their Lasers
4.3.1. Er:Y2O3
4.3.2. Er:Lu2O3
4.4. Development Status of Er-Doped Aluminum Crystals and Their Lasers
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Bertie, J.E.; Lan, Z. Infrared intensities of liquids XX: The intensity of the OH Stretching Band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 °C between 15,000 and 1 cm−1. Appl. Spectrosc. 1996, 50, 1047–1057. [Google Scholar] [CrossRef]
- Kintz, G.J.; Allen, R.; Esterowitz, L. Cw and pulsed 2.8 μm laser emission from diode-pumped Er3+:LiYF4 at room temperature. Appl. Phys. Lett. 1987, 50, 1553–1555. [Google Scholar] [CrossRef]
- Gebbie, H.A.; Harding, W.R.; Hilsum, C.; Pryce, A.W.; Roberts, V. Atmospheric transmission in the 1 to 14 μm region. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 206, 87–107. [Google Scholar] [CrossRef]
- Sorokina, I.T.; Vodopyanov, K.L. Solid-State Mid-Infrared Laser Sources; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Zajac, A.; Skorczakowski, M.; Swiderski, J.; Nyga, P. Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications. Opt. Express 2004, 12, 5125–5130. [Google Scholar] [CrossRef] [PubMed]
- Vagdouti, T.; Theodoridis, C.; Tseleki, G.; Vouros, I. Long-term clinical outcomes of Er:YAG or Er,Cr:YSGG lasers utilized as monotherapy or as adjuncts to mechanical therapy in the treatment of chronic periodontitis: A systematic review. Lasers Dent. Sci. 2023, 7, 1–15. [Google Scholar] [CrossRef]
- Svejkar, R.; Šulc, J.; Jelínková, H.; Kubeček, V.; Ma, W.; Jiang, D.; Wu, Q.; Su, L. Diode-pumped Er:SrF2 laser tunable at 2.7 μm. Opt. Mater. Express 2018, 8, 1025–1030. [Google Scholar] [CrossRef]
- Fedorov, V.; Mirov, S.; Gallian, A.; Badikov, D.; Frolov, M.; Korostelin, Y.; Kozlovsky, V.; Landman, A.; Podmar’Kov, Y.; Akimov, V.; et al. 3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures. IEEE J. Quantum Elect. 2010, 42, 907–917. [Google Scholar] [CrossRef]
- Sanamyan, T.; Simmons, J.; Dubinskii, M. Efficient cryo-cooled 2.7 µm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level. Laser Phys. Lett. 2010, 7, 569–572. [Google Scholar] [CrossRef]
- Fedorov, V.; Martyshkin, D.; Karki, K.; Mirov, S. Q-switched and gain-switched Fe:ZnSe lasers tunable over 3.60–5.15 µm. Opt. Express 2019, 27, 13934–13941. [Google Scholar] [CrossRef]
- Desurvire, E. Erbium-Doped Fiber Amplifiers; John Wiley and Sons: New York, NY, USA, 1994. [Google Scholar]
- Kaminskii, A.A. Laser Crystals; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Dinerman, B.J.; Moulton, P.F. 3 μm cw laser operations in erbium-doped YSGG, GGG, and YAG. Opt. Lett. 1994, 19, 1143–1145. [Google Scholar] [CrossRef]
- Georgescu, S.; Glynn, T.; Sherlock, R.; Lupei, V. Concentration quenching of the 4I9/2 level of Er3+ in laser crystals. Opt. Commun. 1994, 106, 75–78. [Google Scholar] [CrossRef]
- Lupei, V.; Georgescu, S.; Florea, V. On the dynamics of population inversion for 3 μm Er3+ lasers. IEEE J. Quantum Elect. 1993, 29, 426–434. [Google Scholar] [CrossRef]
- Lupei, V.; Georgescu, S. Erbium three-micron laser emission as an up-conversion system. Opt. Eng. 1996, 35, 1265–1272. [Google Scholar] [CrossRef]
- Moulton, P.; Manni, J.; Rines, G. Spectroscopic and laser characteristics of Er,Cr:YSGG. IEEE J. Quantum Elect. 1988, 24, 960–973. [Google Scholar] [CrossRef]
- Feng, S.; Liu, C.; Zhu, J.; Xu, Y.; Xiao, X.; Guo, H. Realizing particle population inversion of 2.7 μm emission in heavy Er3+/Pr3+ co-doped low hydroxyl fluorotellurite glass for mid-infrared laser. Ceram. Int. 2023, 49, 20372–20380. [Google Scholar] [CrossRef]
- Schäfer, M.C.; Petter, M.; Hartenbach, I.; Locke, R.J.C.; Zhang, S.; Wickleder, C.; Schleid, T. Luminescence properties of Y3F[Si3O10]:Ln3+ (Ln = Eu, Tb, Er) with thalenite-type host lattice and crystal structure of Tm3F[Si3O10]. Crystals 2023, 13, 511. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, S.; Tian, T.; Xiao, X.; Chen, Y.; Zhang, Y.; Xu, J. Growth and spectral properties of Er3+ and Yb3+ co-doped bismuth silicate single crystal. Crystals 2022, 12, 1532. [Google Scholar] [CrossRef]
- Georgescu, S.; Lupei, V.; Glynn, T.; Sherlock, R. Spectroscopic determination of the figures of merit for 3 μm Er3+ lasers. J. Lumin. 1994, 60–61, 241–244. [Google Scholar] [CrossRef]
- Tikerpae, M.; Jackson, S.D.; King, T.A. Theoretical comparison of Er3+ doped crystal lasers. J. Mod. Opt. 1998, 45, 1269–1284. [Google Scholar] [CrossRef]
- Švejkar, R.; Šulc, J.; Jelínková, H. Er-doped crystalline active media for ~3 μm diode-pumped lasers. Prog. Quantum. Electron. 2020, 74, 100276. [Google Scholar] [CrossRef]
- Švejkar, R.; Šulc, J.; Boháček, P.; Němec, M.; Jelínková, H.; Trunda, B.; Havlák, L.; Nikl, M.; Jurek, K. Influence of Er3+ concentration in Er:GGAG crystal on spectroscopic and laser properties. J. Alloys Compd. 2023, 941, 168964. [Google Scholar] [CrossRef]
- Tang, K.; Yingming, S.; Gai, J.; Pan, Z. Evaluation of growth, thermal, and spectroscopic properties of Er3+ doped CLNGG crystals for Use in 2.7 μm Laser. Crystals 2021, 11, 126. [Google Scholar] [CrossRef]
- Zhong, K. Laser performance of neodymium- and erbium-doped GYSGG crystals. Crystals 2019, 9, 220. [Google Scholar] [CrossRef]
- Shterengas, L.; Liang, R.; Kipshidze, G.; Hosoda, T.; Belenky, G.; Bowman, S.S.; Tober, R.L. Cascade type-I quantum well diode lasers emitting 960 mW near 3 μm. Appl. Phys. Lett. 2014, 105, 161112. [Google Scholar] [CrossRef]
- Iwakuni, K.; Porat, G.; Bui, T.Q.; Bjork, B.J.; Schoun, S.B.; Heckl, O.H.; Fermann, M.E.; Ye, J. Phase-stabilized 100 mW frequency comb near 10 μm. Appl. Phys. B 2018, 124, 128. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Shen, Y.; Zong, N.; Bian, Q.; Wang, E.-P.; Chang, J.-Q.; Bo, Y.; Cui, D.-F.; Peng, Q.-J. 1.53 W all-solid-state nanosecond pulsed mid-infrared laser at 6.45 µm. Opt. Lett. 2022, 47, 1359–1362. [Google Scholar] [CrossRef]
- Hemming, A.; Richards, J.; Davidson, A.; Carmody, N.; Bennetts, S.; Simakov, N.; Haub, J. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle. Opt. Express 2013, 21, 10062–10069. [Google Scholar] [CrossRef]
- Lippert, E.; Fonnum, H.; Haakestad, M.W. Laser source with high pulse energy at 3–5 m and 8–12 m based on nonlinear conversion in ZnGeP2. In Proceedings of the Technologies for Optical Countermeasures XI; and High-Power Lasers 2014: Technology and Systems, Amsterdam, The Netherlands, 22–25 September 2014. [Google Scholar] [CrossRef]
- Aydin, Y.O.; Fortin, V.; Vallée, R.; Bernier, M. Towards power scaling of 2.8 μm fiber lasers. Opt. Lett. 2018, 43, 4542–4545. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Y.; Zhu, F.; Ma, L.; Zhao, L.; Chen, Z.; Wang, H.; Huang, C.; Huang, K.; Feng, G. 200 μJ, 13 ns Er:ZBLAN mid-infrared fiber laser actively Q-switched by an electro-optic modulator. Opt. Lett. 2021, 46, 1141–1144. [Google Scholar] [CrossRef]
- Yu, L.; Liang, J.; Huang, S.; Wang, J.; Wang, J.; Luo, X.; Yan, P.; Dong, F.; Liu, X.; Lue, Q.; et al. Average-power (4.13 W) 59 fs mid-infrared pulses from a fluoride fiber laser system. Opt. Lett. 2022, 47, 2562–2565. [Google Scholar] [CrossRef]
- Wei, C.; Luo, H.; Shi, H.; Lyu, Y.; Zhang, H.; Liu, Y. Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm. Opt. Express 2017, 25, 8816. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, D.G.; Gross, S.; Ebendorff-Heidepriem, H.; Withford, M.J.; Monro, T.M.; Jackson, S.D. Efficient 2.9 μm fluorozirconate glass waveguide chip laser. Opt. Lett. 2013, 38, 2588–2591. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.J.Y.; Chen, F.C.F. Compact solid-state waveguide lasers operating in the pulsed regime: A review. Chin. Opt. Lett. 2019, 17, 012302. [Google Scholar]
- Grivas, C. Optically pumped planar waveguide lasers, part I: Fundamentals and fabrication techniques. Prog. Quantum. Electron. 2011, 35, 159–239. [Google Scholar] [CrossRef]
- Grivas, C. Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications. Prog. Quantum. Electron. 2016, 45/46, 3–160. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Butaeva, T.I.; Ivanov, A.O.; Mochalov, I.V.; Petrosian, A.G.; Rogov, G.I.; Fedorov, V.A. New data on stimulated emission of crystals containing Er3+ and Ho3+ ions. Sov. Tech. Phys. Lett. 1976, 2, 308–310. [Google Scholar]
- Georgescu, S.; Lupei, V.; Ursu, I. The role of cross-relaxation mechanisms in the quasistationary generation regime of YAG:Er laser. Rev. Roum. Phys. 1986, 31, 857–864. [Google Scholar]
- Chou, H.; Jenssen, H.P. Up-conversion Processes in Er-activated Solid State Laser Materials. In Proceedings of the Advanced Solid State Lasers, Cape Cod, MA, USA, 1 May 1989. [Google Scholar] [CrossRef]
- Zhekov, V.I.; Lobachev, V.A.; Murina, T.M.; Prokhorov, A.M. Cooperative phenomena in yttrium erbium aluminum garnet crystals. Sov. J. Quantum Electron. 2007, 14, 128–130. [Google Scholar] [CrossRef]
- Bagdasarov, K.S.; Zhekov, V.I.; Lobachev, V.A.; Manenkov, A.A.; Murina, T.M.; Prokhorov, A.M. Cross-relaxation YAG:Er3+ laser. Izv. Akad. Nauk SSSR Ser. Fiz. 1984, 48, 1765–1770. [Google Scholar]
- Georgescu, S.; Lupei, V.; Lupei, A.; Zhekov, V.; Murina, T.; Studenikin, M. Concentration effects on the up-conversion from the 4I13/2 level of Er3+ in YAG. Opt. Commun. 1991, 81, 186–192. [Google Scholar] [CrossRef]
- Koechner, W. Solid-State Laser Engeneering; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hu, L.; Sun, D.; Zhang, H.; Luo, J.; Quan, C.; Han, Z.; Dong, K.; Chen, Y.; Cheng, M. Diode end-pumped 1.37W Er:YSGG continuous-wave laser around 2.8 μm. IEEE Photon. Technol. Lett. 2021, 33, 611–614. [Google Scholar] [CrossRef]
- Lupei, V. ER3+ emission in garnets: Multisites, energy transfer and quantum efficiency. Opt. Mater. 2002, 19, 95–107. [Google Scholar] [CrossRef]
- Kränkel, C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range. IEEE J. Sel. Top. Quantum Electron. 2014, 21, 250–262. [Google Scholar] [CrossRef]
- Hu, L.; Sun, D.; Luo, J.; Zhang, H.; Zhao, X.; Quan, C.; Han, Z.; Dong, K.; Cheng, M.; Yin, S. Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er:YSGG crystal. J. Lumin. 2020, 226, 250–262. [Google Scholar] [CrossRef]
- Ma, W.; Su, L.; Xu, X.; Wang, J.; Jiang, D.; Zheng, L.; Fan, X.; Li, C.; Liu, J.; Xu, J. Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er:CaF2 crystals. Opt. Mater. Express 2016, 6, 409–415. [Google Scholar] [CrossRef]
- Quan, C.; Sun, D.; Zhang, H.; Luo, J.; Hu, L.; Han, Z.; Qiao, Y.; Dong, K.; Chen, Y.; Cheng, M. Growth, spectroscopy and high-power laser operation of Er:YAP crystal with different Er3+ concentrations. J. Lumin. 2022, 251, 119122. [Google Scholar] [CrossRef]
- Matulić, N.; Bago, I.; Sušić, M.; Gjorgievska, E.; Knežević, A.K.; Gabrić, D. Comparison of Er:YAG and Er,Cr:YSGG laser in the treatment of oral leukoplakia lesions refractory to the local retinoid therapy. Photobiomodul. Photomed. Laser Surg. 2019, 37, 362–368. [Google Scholar] [CrossRef]
- Harashima, T.; Kinoshita, J.-I.; Kimura, Y.; Brugnera, A.; Zanin, F.; Pecora, J.D.; Matsumoto, K.; Hossain, M.; Nakamura, Y.; Yamada, Y.; et al. Morphological comparative study on ablation of dental hard tissues at cavity preparation by Er:YAG and Er,Cr:YSGG lasers. Photomed. Laser Surg. 2005, 23, 52–55. [Google Scholar] [CrossRef]
- Wang, K.; Gao, C.; Lin, Z.; Wang, Q.; Gao, M.; Huang, S.; Chen, C. 1645 nm coherent Doppler wind lidar with a single-frequency Er:YAG laser. Opt. Express 2020, 28, 14694–14704. [Google Scholar] [CrossRef]
- Sanamyan, T. Efficient cryogenic mid-IR and eye-safe Er:YAG laser. J. Opt. Soc. Am. B 2016, 33, D1–D6. [Google Scholar] [CrossRef]
- Ter-Gabrielyan, N.; Dubinskii, M.; Newburgh, G.A.; Michael, A.; Merkle, L.D. Temperature dependence of a diode-pumped cryogenic Er:YAG laser. Opt. Express 2009, 17, 7159–7169. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tian, Y.; Qu, B.; Zhu, Z.; Hui, Y.; Lei, H.; Li, Q. High slope efficiency 3 μm Er:YAG cyclic cascade pulsed lasers. Opt. Laser Technol. 2023, 158, 108868. [Google Scholar] [CrossRef]
- Wüthrich, S.; Lüthy, W.; Weber, H.P. Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 μm. J. Appl. Phys. 1990, 68, 5467–5471. [Google Scholar] [CrossRef]
- Chen, D.-W.; Fincher, C.L.; Rose, T.S.; Vernon, F.L.; Fields, R.A. Diode-pumped 1-W continuous-wave Er:YAG 3 μm laser. Opt. Lett. 1990, 24, 385–387. [Google Scholar] [CrossRef]
- Sousa, J.G.; Welford, D.; Foster, J. Efficient 1.5W CW and 9mJ Quasi-CW TEM00 Mode Operation of A Compact Diode-Laser-Pumped 2.94µm Er:YAG Laser. In Proceedings of the Solid State Lasers XIX: Technology and Devices, San Francisco, CA, USA, 23–28 January 2010. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Wu, X.; Cheng, T.; Jiang, H. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues. Opt. Express 2014, 22, 15686–15696. [Google Scholar] [CrossRef] [PubMed]
- Karki, K.; Fedorov, V.; Martyshkin, D.; Mirov, S. High energy (0.8J) mechanically Q-switched 2.94 μm Er:YAG laser. Opt. Express 2021, 29, 4287–4295. [Google Scholar] [CrossRef] [PubMed]
- Messner, M.; Heinrich, A.; Hagen, C.; Unterrainer, K. High Brightness Diode Pumped Er:YAG Laser System at 2.94 µm with Nearly 1 kW Peak Power. In Proceedings of the Solid State Lasers XXV: Technology and Devices, San Francisco, CA, USA, 13–18 February 2016. [Google Scholar] [CrossRef]
- Abbasi, H.; Bernal, L.M.B.; Hamidi, A.; Droneau, A.; Canbaz, F.; Guzman, R.; Jacques, S.L.; Cattin, P.C.; Zam, A. Combined Nd:YAG and Er:YAG lasers for real-time closed-loop tissue-specific laser osteotomy. Biomed. Opt. Express 2020, 11, 1790–1807. [Google Scholar] [CrossRef]
- LLi, Y.-Y.; Dai, T.-Y.; Duan, X.-M.; Guo, C.-F.; Xu, L.-W.; Ju, Y.-L. Fe:ZnSe laser pumped by a 2.93 μm Cr, Er:YAG laser. Chin. Phys. B 2019, 28, 195–198. [Google Scholar] [CrossRef]
- Martyshkin, D.; Karki, K.; Fedorov, V.; Mirov, S. Room temperature, nanosecond, 60 mJ/pulse Fe: ZnSe master oscillator power amplifier system operating at 3.8–5.0 µm. Opt. Express 2021, 29, 2387–2393. [Google Scholar] [CrossRef]
- Nie, H.; Wang, F.; Liu, J.; Yang, K.; Zhang, B.; He, J. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: A review. Chin. Opt. Lett. 2021, 19, 091407. [Google Scholar] [CrossRef]
- Arbabzadah, E.A.; Phillips, C.C.; Damzen, M.J. Free-running and Q-switched operation of a diode pumped Er:YSGG laser at the 3μm transition. Appl. Phys. B 2013, 111, 333–339. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, T.; Wang, L.; Yang, J.; Sun, D.; Yin, S.; Wu, X.; Jiang, H. Compensation of strong thermal lensing in an LD side-pumped high-power Er:YSGG laser. Laser Phys. Lett. 2015, 12, 105004. [Google Scholar] [CrossRef]
- Chen, G.; Li, B.; Zhao, S.; Yuan, L.; Wei, L. High-weight LD pump Er:YSGG solid laser. Laser Infrared 2019, 49, 956–960. [Google Scholar]
- Hu, Q.; Nie, H.; Mu, W.; Yin, Y.; Zhang, J.; Zhang, B.; He, J.; Jia, Z.; Tao, X. Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals. Laser Phys. Lett. 2019, 21, 1928–1933. [Google Scholar] [CrossRef]
- Ye, X.; Xu, X.; Ren, H.; Zhang, B.; Zhang, L.; Wei, X.; Wan, M.; He, T. Enhanced high-slope-efficiency and high-power LD side-pumped Er:YSGG laser. Appl. Opt. 2019, 58, 9949–9954. [Google Scholar] [CrossRef]
- Ye, X.; Xu, X.; Ren, H.; Zhang, B.; Zhang, L.; Wei, X.; Fan, G. Study of LD side-pumped two-rod Er:YSGG mid-infrared laser with 61-W output power. Opt. Commun. 2022, 507, 127608. [Google Scholar] [CrossRef]
- Mitrokhin, V.P.; Savvin, A.D.; Simonova, V.; Sirotkin, A.A.; Firsov, K.N.; Dormidonov, A.E.E. Er:YAG, Er:Cr: YSGG and Ho:Yb:Cr: YSGG lasers with high power diode pumping. Kvantovaya Elektron. 2022, 52, 597–603. [Google Scholar]
- Malekafzali, B.; Asnaashari, M.; Javadi, F. Comparison of marginal microleakage of flowable composite restorations in primary canine teeth prepared with high-speed diamond bur, Er:YAG laser and Er,Cr:YSGG laser. Laser Ther. 2017, 26, 195–202. [Google Scholar] [CrossRef]
- Sorokin, P.P.; Stevenson, M.J. Stimulated infrared emission from trivalent uranium. Phys. Rev. Lett. 1960, 5, 557–559. [Google Scholar] [CrossRef]
- Robinson, M.; Devor, D.P. Thermal switching of laser emission of Er3+ at 2.69 μm and Tm3+ at 1.86 μm in mixed crystals of CaF2:ErF3:TmF3. Appl. Phys. Lett. 1967, 10, 167–170. [Google Scholar] [CrossRef]
- Silversmith, A.J.; Lenth, W.; Macfarlane, R.M. Green infrared-pumped erbium upconversion laser. Appl. Phys. Lett. 1987, 51, 1977–1979. [Google Scholar] [CrossRef]
- Basiev, T.T.; Orlovskii, Y.V.; Polyachenkova, M.V.; Fedorov, P.P.; Kuznetsov, S.V.; Konyushkin, V.A.; Osiko, V.V.; Alimov, O.K.; Dergachev, A.Y. Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. Quantum Electron. 2006, 36, 591. [Google Scholar] [CrossRef]
- Šulc, J.; Němec, M.; Švejkar, R.; Jelínková, H.; Doroshenko, M.E.; Fedorov, P.P.; Osiko, V.V. Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser. Opt. Lett. 2013, 38, 3406–3409. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Li, T.; Zhao, J.; Zhao, S.; Li, G.; Yang, K.; Su, L.; Ma, H.; Kränkel, C. Continuous wave and ReS2 passively Q-switched Er:SrF2 laser at ∼3 μm. Opt. Lett. 2018, 43, 1726–1729. [Google Scholar] [CrossRef]
- Zhao, Y.-H.; Zong, M.-Y.; Dong, J.-H.; Zhang, Z.; Liu, J.-J.; Liu, J.; Su, L.-B. Mid-infrared Lightly Er3+ doped CaF2 Laser under Acousto-optical Modulation. Chin. Phys. B 2022, 32, 034203. [Google Scholar] [CrossRef]
- Ma, W.; Qian, X.; Wang, J.; Liu, J.; Fan, X.; Liu, J.; Su, L.; Xu, J. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals. Sci. Rep. 2016, 6, 36635. [Google Scholar] [CrossRef]
- Švejkar, R.; Šulc, J.; Němec, M.; Jelínková, H.; Doroshenko, M.E.; Nakladov, A.N.; Osiko, V.V. Effect of Cryogenic Temperature on Spectroscopic and Laser Properties of Er;La:SrF2-CaF2 Crystal. In Proceedings of the Solid State Lasers XXV: Technology and Devices, San Francisco, CA, USA, 13–18 February 2016. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Jiang, S.; Xu, S.; Ma, W.; Wang, J.; Xu, X.; Su, L. 2.8 μm passively Q-switched Er:CaF2 diode-pumped laser. Opt. Mater. Express 2016, 6, 1570–1575. [Google Scholar] [CrossRef]
- Su, L.; Guo, X.; Jiang, D.; Wu, Q.; Qin, Z.; Xie, G. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er:SrF2 single crystal. Opt. Express 2018, 26, 5558–5563. [Google Scholar] [CrossRef]
- Liu, J.; Feng, X.; Fan, X.; Zhang, Z.; Zhang, B.; Liu, J.; Su, L. Efficient continuous-wave and passive Q-switched mode-locked Er3+:CaF2–SrF2 lasers in the mid-infrared region. Opt. Lett. 2018, 43, 2418–2421. [Google Scholar] [CrossRef]
- Guo, L.; Wang, M.; Zhang, Y.; Zhang, S.; Zhong, K.; Zhao, Q.; Teng, L.; Wang, X.; Yao, J. Mid-Infrared Dual-Wavelength Passively Q-Switched Er:SrF2 Laser by CsPbCl3 Quantum Dots Absorber. Crystals 2022, 12, 1265. [Google Scholar] [CrossRef]
- Liao, J.; Chen, Q.; Niu, X.; Zhang, P.; Tan, H.; Ma, F.; Li, Z.; Zhu, S.; Hang, Y.; Yang, Q.; et al. Energy Transfer and Cross-Relaxation Induced Efficient 2.78 μm Emission in Er3+/Tm3+:PbF2 mid-Infrared Laser Crystal. Crystals 2021, 11, 1024. [Google Scholar] [CrossRef]
- Messner, M.; Heinrich, A.; Unterrainer, K. High-energy diode side-pumped Er:LiYF4 laser. Appl. Opt. 2018, 57, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wang, R.; Han, Q.; Dong, J.; Yan, L.; Zheng, H. Tuning Red Upconversion Emission in Single LiYF4:Yb3+/Ho3+ Microparticle. J. Phys. Chem. C 2015, 119, 2349–2355. [Google Scholar] [CrossRef]
- Jensen, T.; Diening, A.; Huber, G.; Chai, B. A Diode Pumped 1.1W cw Er:YLF Laser At 2.8 μm. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 21–26 May 1995. [Google Scholar]
- Wyss, C.; Lüthy, W.; Weber, H.; Rogin, P.; Hulliger, J. Emission properties of an optimised 2.8 μm Er3+:YLF laser. Opt. Commun. 1997, 139, 215–218. [Google Scholar] [CrossRef]
- Dergachev, A.; Moulton, P.F. Tunable CW Er:YLF Diode-Pumped Laser. In Proceedings of the Advanced Solid-State Photonics, San Antonio, TX, USA, 2–5 February 2003. [Google Scholar]
- Inochkin, M.V.; Nazarov, V.V.; Sachkov, D.Y.; Khloponin, L.V.; Khramov, V.Y. Dynamics of the lasing spectrum of a 3-μm Er:YLF laser with semiconductor pumping. J. Opt. Technol. 2009, 76, 720–724. [Google Scholar] [CrossRef]
- Inochkin, M.V.; Nazarov, V.V.; Sachkov, D.Y.; Khloponin, L.V.; Khramov, V.Y. The dynamics of the emission spectrum of an Er:YLF laser in the pulsed-periodic operating regime. J. Opt. Technol. 2010, 77, 413–416. [Google Scholar] [CrossRef]
- Inochkin, M.V.; Korostelin, Y.V.; Landman, A.I.; Nazarov, V.V.; Sachkov, D.Y.; Podmar’kov, Y.P.; Frolov, M.P.; Khloponin, L.V.; Khramov, V.Y. A compact Er:YLF laser with a passive Fe2+:ZnSe shutter. J. Opt. Technol. 2012, 79, 337–339. [Google Scholar] [CrossRef]
- Fedorov, N.; Inochkin, M.; Khloponin, L.; Khramov, V.; Nazarov, V.; Sachkov, D. Multiwave diode pumped Q-switch Er:YLF laser. In Proceedings of the 2014 International Conference Laser Optics, St. Petersburg, Russia, 30 June–4 July 2014. [Google Scholar] [CrossRef]
- Messner, M.; Heinrich, A.; Hagen, C.; Unterrainer, K. Acousto-optically Q-switched diode side-pumped Er:YLF laser generating 50kW peak power in 70ns pulses. In Proceedings of the Solid State Lasers XXVIII: Technology and Devices, San Francisco, CA, USA, 2–7 February 2019. [Google Scholar] [CrossRef]
- Ter-Gabrielyan, N.; Fromzel, V. Cascade generation at 1.62, 1.73 and 2.8 µm in the Er:YLF Q-switched laser. Opt. Express 2019, 27, 20199–20210. [Google Scholar] [CrossRef]
- Švejkar, R.; Šulc, J.; Němec, M.; Jelínková, H. Compact diode-pumped CW and Q-switched 2.8 µm Er:YLF laser. J. Opt. Soc. Am. B 2021, 38, B26–B29. [Google Scholar] [CrossRef]
- Pushkin, A.; Slovinsky, I.A.; Shakirov, A.A.; Shavelev, A.; Potemkin, F.V. Diode-side-pumped watt-level high-energy Q-switched mid-IR Er:YLF laser. Opt. Lett. 2021, 46, 5465–5468. [Google Scholar] [CrossRef]
- Sanamyan, T.; Dubinskii, M. Er3+-Doped Diode-Pumped Ceramic Laser Delivers 14 W CW at 2.7 μm. In Proceedings of the CLEO: Science and Innovations, Baltimore, MD, USA, 1–6 May 2011. [Google Scholar] [CrossRef]
- Sanamyan, T.; Kanskar, M.; Xiao, Y.; Kedlaya, D.; Dubinskii, M. High power diode-pumped 2.7-μm Er3+:Y2O3 laser with nearly quantum defect-limited efficiency. Opt. Express 2011, 19, A1082–A1087. [Google Scholar] [CrossRef] [PubMed]
- Fleischman, Z.D.; Sanamyan, T. Spectroscopic analysis of Er3+:Y2O3 relevant to 2.7µm mid-IR laser. Opt. Mater. Express 2016, 6, 3109–3118. [Google Scholar] [CrossRef]
- Sanamyan, T. Diode pumped cascade Er:Y2O3 laser. Laser Phys. Lett. 2015, 12, 125804. [Google Scholar] [CrossRef]
- Wang, L.; Huang, H.; Shen, D.; Zhang, J.; Chen, H.; Tang, D. Diode-pumped high power 2.7 μm Er: Y2O3 ceramic laser at room temperature. Opt. Mater. 2022, 71, 70–73. [Google Scholar] [CrossRef]
- Ding, M.; Li, X.; Wang, F.; Shen, D.; Wang, J.; Tang, D.; Zhu, H. Power scaling of diode-pumped Er:Y2O3 ceramic laser at 2.7 μm. Appl. Phys. Express 2022, 15, 062004. [Google Scholar] [CrossRef]
- Qin, Z.; Xie, G.; Zhang, J.; Ma, J.; Yuan, P.; Qian, L. Continuous-Wave and Passively Q-Switched Er:Y2O3 Ceramic Laser at 2.7 μm. Int. J. Opt. 2018, 2018, 3153614. [Google Scholar] [CrossRef]
- Peters, V.; Fornasiero, L.; Mix, E.; Diening, A.; Petermann, K.; Huber, G. Spectroscopic Characterization And Diode-Pumped Laser Action At 2.7 μm of Er:Lu2O3. In Proceedings of the European Conference on Lasers and Electro-Optics, Glasgow, UK, 14–18 September 1998. [Google Scholar] [CrossRef]
- Li, T.; Beil, K.; Krankel, C.; Brandt, C.; Huber, G. Laser performance of highly doped Er:Lu2O3 at 2.8µm. In Proceedings of the Advanced Solid-State Photonics, San Diego, CA, USA, 29 January–1 February 2012. [Google Scholar] [CrossRef]
- Li, T.; Beil, K.; Kränkel, C.; Huber, G. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm. Opt. Lett. 2012, 37, 2568–2570. [Google Scholar] [CrossRef]
- Yao, W.; Uehara, H.; Tokita, S.; Chen, H.; Konishi, D.; Murakami, M.; Yasuhara, R. LD-pumped 2.8 μm Er:Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency. Appl. Phys. Express. 2020, 14, 012001. [Google Scholar] [CrossRef]
- Wang, L.; Huang, H.; Shen, D.; Zhang, J.; Tang, D. High Power and Short Pulse Width Operation of Passively Q-Switched Er:Lu2O3 Ceramic Laser at 2.7 μm. Appl. Sci. 2018, 8, 801. [Google Scholar] [CrossRef]
- Uehara, H.; Tokita, S.; Kawanaka, J.; Konishi, D.; Murakami, M.; Yasuhara, R. A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber. Appl. Phys. Express 2019, 12, 022002. [Google Scholar] [CrossRef]
- Stalder, M.; Lüthy, W. Polarisation of 3 μm laser emission in YAlO3:Er. Opt. Commun. 1987, 61, 274–276. [Google Scholar] [CrossRef]
- Zeng, R.R.; Shen, H.Y.; Huang, C.N.; Zhou, Y.P.; Yu, G.F.; Zeng, Z.D.; Lu, J.; Ye, Q.J. A 2.7 μm Er: YAP laser. Chin. J. Lasers 1990, 17, 60–62. [Google Scholar]
- Švejkar, R.; Šulc, J.; Němec, M.; Jelínková, H.; Nejezchleb, K.; Čech, M. Temperature Influence on Spectroscopic Properties and 2.7 μm Lasing of Er:YAP Crystal. In Proceedings of the Solid State Lasers XXVII: Technology and Devices, San Francisco, CA, USA, 27 January–1 February 2018. [Google Scholar] [CrossRef]
- Quan, C.; Sun, D.; Luo, J.; Zhang, J.; Fang, Z.; Zhao, X.; Hu, L.; Cheng, M.; Zhang, Q.; Yin, S. 2.7 μm dual-wavelength laser performance of LD end-pumped Er:YAP crystal. Opt. Express 2018, 26, 28421–28428. [Google Scholar] [CrossRef]
- Kawase, H.; Yasuhara, R. 2.92 µm high-efficiency continuous-wave laser operation of diode-pumped Er:YAP crystal at room temperature. Opt. Express 2019, 27, 12213–12220. [Google Scholar] [CrossRef]
- Kawase, H.; Uehara, H.; Chen, H.; Yasuhara, R. Passively Q-switched 2.9 μm Er:YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express 2019, 12, 102006. [Google Scholar] [CrossRef]
- Yao, Y.; Cui, N.; Wang, Q.; Dong, L.; Liu, S.; Sun, D.; Zhang, H.; Li, D.; Zhang, B.; He, J. Highly efficient continuous-wave and ReSe2 Q-switched ∼3 μm dual-wavelength Er:YAP crystal lasers. Opt. Lett. 2019, 44, 2839–2842. [Google Scholar] [CrossRef]
- Yao, W.; Uehara, H.; Kawase, H.; Chen, H.; Yasuhara, R. Highly efficient Er:YAP laser with 6.9W of output power at 2920 nm. Opt. Express 2020, 28, 19000–19007. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Uehara, H.; Li, E.; Yasuhara, R. Power-scalable two-wavelength pumped Er:YAP laser at 2.9 μm. Opt. Laser. Technol. 2022, 152, 108073. [Google Scholar] [CrossRef]
- Buryi, M.; Gaston-Bellegarde, A.M.; Pejchal, J.; Levchenko, F.; Remeš, Z.; Ridzoňová, K.; Babin, V.; Chertopalov, S. The role of Er3+ content in the luminescence properties of Y3Al5O12 single crystals: Incorporation into the lattice and defect state creation. Crystals 2023, 13, 562. [Google Scholar] [CrossRef]
- Park, Y.H.; Lee, D.W.; Kong, H.J.; Kim, Y.S. Dynamics of a flashlamp pumped 2.70 μm emission Cr:Er:YSGG laser with an infrared-quartz FTIR shutter. J Opt. Soc. Am. B 2008, 25, 2123–2129. [Google Scholar] [CrossRef]
- Murphy, F.J.; Arbabzadah, E.A.; Bak, A.O.; Amrania, H.; Damzen, M.J.; Phillips, C.C. Optical chopper Q-switching for flashlamp-pumped Er.Cr:YSGG lasers. Laser. Phys. Lett. 2015, 12, 045802. [Google Scholar] [CrossRef]
- Jiang, L.L.; Wu, Z.C.; Cheng, T.Q.; Jiang, H. 79-µm efficient acousto-optic Q switched Er,Cr:YSGG laser with an LiNbO3 crystal modulator. Opt. Lett. 2020, 47, 6193–6196. [Google Scholar] [CrossRef] [PubMed]
- Myoung, N.; Martyshkin, D.V.; Fedorov, V.V.; Mirov, S.B. Energy scaling of 4.3 μm room temperature Fe:ZnSe laser. Opt. Lett. 2011, 36, 94–96. [Google Scholar] [CrossRef] [PubMed]
Active Medium | T [K] | α [10−6K] | κ [W∙m−1K−1] | ∆n | Ph [cm−1] | References |
---|---|---|---|---|---|---|
Er:YAG | 1970 | 8.2 | 11.72 | - | 865 | [49] |
Er:YSGG | 1877 | - | 6.83 | - | 728 | [50] |
Er:YLF | 830 | 13 | 6 | 0.0227 | 447 | [2] |
Er:SrF2 | 1473 | 18.4 | 8.3 | - | 280 | [7] |
Er:CaF2 | 1418 | 18.9 | 9.7 | - | 322 | [51] |
Er:YAP | 1875 | 9.5 | 11 | 0.0235 | 550 | [52] |
Er:Y2O3 | 2430 | 8.5 | 13.4 | - | 597 | [49] |
Er:Lu2O3 | 2450 | 8.6 | 12.8 | - | 618 | [49] |
Active Medium | Er Conc. (at.%) | Pump | Pout (W) | σ (%) | λ (μm) | References |
---|---|---|---|---|---|---|
Er:YAG | 50 | LD | 1.5 | 34 | 2.94 | [60] |
50 | LD | 50 | - | 2.94 | [64] | |
Er:YSGG | 30 | LD | 0.75 | 31.5 | 2.8 | [72] |
35 | LD | 61.02 | 12.6 | 2.8 | [74] | |
Er:SrF2 | 3 | LD | 1.3 | 9.2 | 2.69–2.813 | [7] |
Er:CaF2 | 1.7 | LD | 2.32 | - | 2.75 | [83] |
Er:YLF | 15 | LD | 1.1 | 35 | 2.8 | [93] |
15 | Sapphire | - | 50 | 2.8 | [94] | |
15 | LD | 10 | 18.6 | 2.8 | [91] | |
Er:Y2O3 | 2 | LD | 1.6 | 27.5 | 2.7 | [104] |
0.5 | LD | 13 | 26 | 2.7 | [107] | |
Er:Lu2O3 | 11 | LD | 6.7 | 30.2 | 2.85 | [114] |
Er:YAP | 10 | LD | 0.74 | 12.1 | 2.7 | [120] |
5 | LD | 6.9 | 30.6 | 2.92 | [124] |
Active Medium | Er Conc. (at.%) | Pump | f (Hz) | τpulse (ns) | Epulse | λ (μm) | References |
---|---|---|---|---|---|---|---|
Er:YAG | 50 | flash lamp | 1 | 61 | 805 mJ | 2.94 | [63] |
Er:YSGG | 35 | LD | 500 | 63.18 | 2 mJ | 2.79 | [71] |
Er:SrF2 | 3 | LD | 49 k | 508 | 12.1 μJ | 2.79 | [82] |
Er:CaF2 | 1.7 | LD | 500 | 555 | 0.49 mJ | 2.75 | [83] |
Er:YLF | 15 | LD | 20 | 13 | 82 mJ | 2.67 | [103] |
Er:Y2O3 | 7 | LD | 130.6 k | 350 | 1.7 μJ | 2.7 | [110] |
Er:Lu2O3 | 7 | LD | 71 K | 70 | 9.8 μJ | 2.7 | [115] |
Er:YAP | 5 | LD | 114 k | 460 | 5.1 μJ | 2.94 | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Gu, D.; Liu, J.; Fang, Y.; Liu, J.; Li, Z.; Cui, K.; Chen, X. Development of the 2.7 μm to 3 μm Erbium-Doped Laser. Crystals 2023, 13, 1471. https://doi.org/10.3390/cryst13101471
Liu G, Gu D, Liu J, Fang Y, Liu J, Li Z, Cui K, Chen X. Development of the 2.7 μm to 3 μm Erbium-Doped Laser. Crystals. 2023; 13(10):1471. https://doi.org/10.3390/cryst13101471
Chicago/Turabian StyleLiu, Guanghui, Di Gu, Jingliang Liu, Yan Fang, Jiaqi Liu, Zhaoyang Li, Kuofan Cui, and Xinyu Chen. 2023. "Development of the 2.7 μm to 3 μm Erbium-Doped Laser" Crystals 13, no. 10: 1471. https://doi.org/10.3390/cryst13101471
APA StyleLiu, G., Gu, D., Liu, J., Fang, Y., Liu, J., Li, Z., Cui, K., & Chen, X. (2023). Development of the 2.7 μm to 3 μm Erbium-Doped Laser. Crystals, 13(10), 1471. https://doi.org/10.3390/cryst13101471